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ABSTRACT 

In the conventional perturbation approach for solving DSGE models, the dynamics of 
the deviation of solutions from the steady state after a shock hitting an economy 
represents an impulse response function (IRF). A method to construct the IRF as a 
deviation from a deterministic global solution is proposed. The approach detects 
asymmetric reactions of an economy to shocks in different initial conditions. For 
example, in an economic downturn a negative shock might affect the economy more 
severely than in normal economic conditions. The method allows for constructing the 
IRF for highly nonlinear DSGE models. 

Keywords: DSGE, perturbation, global solution, trend inflation 
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1. INTRODUCTION

Perturbation methods are the most widely-used approach to solve DSGE models owing 
to their ability to deal with medium and large size models – in a small computational 
time. The approach is based on the Taylor series approximation of DSGE models around 
the steady state and has recently been extensively developed (see, for example, Collard 
and Juillard (2001), Gaspar and Judd (1997), Gomme and Klein (2011), Jin and Judd 
(2002), Judd and Guu (1997), Lombardo (2010), Lombardo and Uhlig (2014), and 
Schmitt-Grohé and Uribe (2004)). However, the solutions obtained by this type of 
methods are accurate only in some small neighbourhood of the steady state. Out of the 
neighbourhood, the solutions may behave odd, for example, they can imply explosive 
dynamics or be very inaccurate (Kim et al. (2008) and Den Haan and De Wind (2012)). 
Moreover, depending on whether an economy is in the steady state or far away from that, 
it may react differently to a shock. This situation may be the case if the economy is: (i) 
highly indebted and/or leveraged, (ii) in a deep recession, (iii) a transition and developing 
one, or (iv) at the effective lower bound for nominal interest rate or other binding 
constraints. 

Global methods are used to deal with solving DSGE models in global domains. These 
methods are quite different, depending on the types of models solved – stochastic or 
deterministic ones. Projection methods are used for solving stochastic models, 
however, they suffer from the curse of dimensionality and as such they can deal with 
only small-scale models (Judd (1998), Aruoba et al. (2006) and Heer and Maussner 
(2008)). On the other hand, the approaches based on Newton's method (see, for 
example, a bunch of algorithms available in Dynare (Adjemian et al. (2011)) are used 
to solve deterministic models. In this case, global solutions can be obtained reasonably 
fast even for large size models. 

This study presents an approach that combines both stochastic perturbation and 
deterministic Newton's methods. Specifically, the approach implies the linearization 
of a DSGE model along a known global deterministic solution. In the conventional 
perturbation approach, after linearization around the steady state, one needs to solve 
a rational expectations model with constant coefficients (see Blanchard and Kahn 
(1980), Anderson and Moore (1985), Uhlig (1999), Klein (2000) and Sims (2002)). 
While, the linearization around a deterministic solution gives us a rational 
expectations model with deterministic time-varying coefficients. The current paper 
uses backward induction to solve this type of models. As a result, we obtain a time-
varying coefficient moving-average representation of the solution. As in the standard 
case, the coefficients of this representation may be treated as an IRF. The approach 
presented is based on the idea of perturbation around a deterministic path by Ajevskis 
(2017). However, while in Ajevskis (2017) the main focus is on the construction of 
policy functions, this paper investigates the generalised impulse response functions 
(GRIFs) under global initial conditions. 

We apply the proposed method to the model of trend inflation by Ascari and Sbordone 
(2014). They find that the value of the steady state inflation rate affects significantly 
the economic dynamics. However, Ascari and Sbordone (2014) consider the response 
of the economy to shocks when it stays at the steady state. By contrast, we address the 
issue of reaction to a monetary shock when the economy is away from the steady state. 
Specifically, the initial conditions correspond to the zero nominal interest rate, i = 0. 
These conditions distinguish reasonably from the steady state. On the other hand, 
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Ascari and Sbordone (2014) show that the New Keynesian model is especially 
nonlinear around the zero inflation steady state. This observation allows for using our 
global approach not moving too far from the steady state.  

The obtained results show that for a non-zero inflation steady state the initial reaction 
of inflation to 0.1% negative interest rate shock is significantly smaller than the 
reaction obtained for the model linearized around the steady state and for the third 
order Taylor series approximation with initial value at i = 0. For the 4% steady state 
of the inflation rate, the IRF even changes its pattern becoming hump-shaped.  

This paper also relates to (Andreasen et al. (2013)) who construct generalised IRFs 
(GIRFs) conditional on the state of the economy. For doing this, they use the pruning 
of the third order Taylor series approximation of the DSGE model and then perform 
Monte Carlo simulation for the path of variables under model dynamics. However, as 
mentioned above, the Taylor series approximation might be very poor if a solution is 
far away from the steady state. Besides, the use of Monte Carlo simulation is rather 
time-consuming. 

2. THE MODEL 

This section describes the DSGE models under consideration in general form as well 
as notations, preparatory material and derivations needed in Section 3. We consider 
DSGE models in the form:  

𝐸𝐸𝑡𝑡𝑓𝑓(𝑦𝑦𝑡𝑡+1,𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡−1,𝑢𝑢𝑡𝑡) = 0 (1) 

where 𝐸𝐸𝑡𝑡 denotes the conditional expectations operator, 𝑦𝑦𝑡𝑡 is an 𝑛𝑛𝑦𝑦 × 1 vector 
containing the 𝑡𝑡-period endogenous variables; 𝑢𝑢𝑡𝑡 = 𝜎𝜎𝜀𝜀𝑡𝑡 is a vector of exogenous i.i.d. 
stochastic shocks; 𝜎𝜎 (𝜎𝜎 > 0) is a scaling parameter; 𝜀𝜀𝑡𝑡 is an auxiliary random variable 
with the covariance matrix Ω. The mapping 𝑓𝑓 maps ℝ𝑛𝑛𝑦𝑦 × ℝ𝑛𝑛𝑦𝑦 × ℝ𝑛𝑛𝑦𝑦 into ℝ𝑛𝑛𝑦𝑦 and 
is assumed to be sufficiently smooth. 

If 𝜎𝜎 = 0 all shocks disappear and the system (1) becomes deterministic  

𝐸𝐸𝑡𝑡𝑓𝑓(𝑦𝑦𝑡𝑡+1,𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡−1, 0) = 0 (2). 

The solution, 𝑦𝑦𝑡𝑡
(0), to the deterministic problem must satisfy the initial conditions  

𝑦𝑦0
(0) = 𝑦𝑦0 (3) 

and the terminal ones  

𝑦𝑦∞
(0) = 𝑦𝑦� (4). 

The terminal conditions for 𝑦𝑦𝑡𝑡 are supposed to be at the deterministic steady state, i.e. 
vectors defined by the equation 𝑓𝑓(𝑦𝑦�,𝑦𝑦�,𝑦𝑦�, 0) = 0. The deterministic problems (2)–(4) 
can be solved globally for a reasonable computational time by a number of effective 
algorithms, for example, the extended path method (Fair and Taylor (1983)) or a 
Newton-like method (for example, Juillard (1996)). 

If we linearize the model around the obtained deterministic solution, (1) takes the 
form:  

𝐸𝐸𝑡𝑡{𝑓𝑓1,𝑡𝑡𝑦𝑦�𝑡𝑡+1 + 𝑓𝑓2,𝑡𝑡𝑦𝑦�𝑡𝑡 + 𝑓𝑓3,𝑡𝑡𝑦𝑦�𝑡𝑡−1 + 𝜎𝜎𝑓𝑓4,𝑡𝑡𝜀𝜀𝑡𝑡} = 0 (5)  
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where 𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡
(0) is deviation from the deterministic solution. The matrices  

𝑓𝑓𝑖𝑖,𝑡𝑡 = 𝑓𝑓𝑖𝑖�𝑦𝑦𝑡𝑡+1
(0) ,𝑦𝑦𝑡𝑡

(0),𝑦𝑦𝑡𝑡−1
(0) , 0�, 𝑖𝑖 = 1, … , 4 (6) 

are the Jacobian matrices of the mapping 𝑓𝑓 with respect to the 𝑖𝑖th argument (i.e. 𝑦𝑦𝑡𝑡+1, 
𝑦𝑦𝑡𝑡, 𝑦𝑦𝑡𝑡−1 and 𝑢𝑢𝑡𝑡, respectively), at the points of the deterministic solution 
(𝑦𝑦𝑡𝑡+1

(0) ,𝑦𝑦𝑡𝑡
(0),𝑦𝑦𝑡𝑡−1

(0) , 0). Equation (5) can also be obtained by expanding original equation 
(1) in a small parameter 𝜎𝜎, as it is done in applied mathematics literature (see, for 
example, Holmes (2013) and Nayfeh (1973)). Now we have a time-varying rational 
expectation model as 𝑓𝑓𝑖𝑖,𝑡𝑡 depend on 𝑡𝑡.  

We can represent 𝑓𝑓𝑖𝑖,𝑡𝑡 in (6) as 𝑓𝑓𝑖𝑖,𝑡𝑡 = 𝑓𝑓𝑖̅𝑖 + 𝑓𝑓𝑖𝑖,𝑡𝑡, 𝑖𝑖 = 1, … ,4 where  

𝑓𝑓𝑖̅𝑖 = 𝑓𝑓𝑖𝑖(𝑦𝑦�,𝑦𝑦�,𝑦𝑦�, 0) 

are the Jacobian matrices of the mapping 𝑓𝑓 at the steady state with respect to the 𝑖𝑖th 
argument, and  

𝑓𝑓𝑖𝑖,𝑡𝑡 = 𝑓𝑓𝑖𝑖,𝑡𝑡(𝑦𝑦𝑡𝑡+1
(0) ,𝑦𝑦𝑡𝑡

(0),𝑦𝑦𝑡𝑡−1
(0) , 0) − 𝑓𝑓𝑖𝑖(𝑦𝑦�,𝑦𝑦�,𝑦𝑦�, 0) (7). 

Note also that 𝑓𝑓𝑖𝑖,𝑡𝑡 → 0 as 𝑡𝑡 → ∞, because a deterministic solution must tend to the 
deterministic steady state as 𝑡𝑡 tends to infinity. Consequently, 𝑓𝑓𝑖𝑖,𝑡𝑡 can be thought of 
as a time-varying perturbation of 𝑓𝑓𝑖𝑖. 

Relabeling 𝑦𝑦�𝑡𝑡−1 as 𝑤𝑤�𝑡𝑡, we can rewrite (5) as a system of equations  

𝑤𝑤�𝑡𝑡+1 = 𝑦𝑦�𝑡𝑡
(𝑓𝑓1 + 𝑓𝑓1,𝑡𝑡)𝐸𝐸𝑡𝑡{𝑦𝑦�𝑡𝑡+1} = −(𝑓𝑓2 + 𝑓𝑓2,𝑡𝑡)𝑦𝑦�𝑡𝑡 − (𝑓𝑓3 + 𝑓𝑓3,𝑡𝑡)𝑤𝑤�𝑡𝑡

 (8). 

Here we take into account that 𝐸𝐸𝑡𝑡𝜀𝜀𝑡𝑡+1 = 0. 

Equation (8) can be written in the vector form  

Φ𝑡𝑡𝐸𝐸𝑡𝑡 �
𝑤𝑤�𝑡𝑡+1
𝑦𝑦�𝑡𝑡+1

� = Λ𝑡𝑡 �
𝑤𝑤�𝑡𝑡
𝑦𝑦�𝑡𝑡
� (9) 

where  

Φ𝑡𝑡 = �
𝐼𝐼 0
0 𝑓𝑓1 + 𝑓𝑓1,𝑡𝑡

� 

and  

Λ𝑡𝑡 = �
0 𝐼𝐼
𝑓𝑓3 + 𝑓𝑓3,𝑡𝑡 𝑓𝑓2 + 𝑓𝑓2,𝑡𝑡

�. 

Here 𝐼𝐼 is the identity matrix. Pre-multiplying (9) by Φ𝑡𝑡
−1, we get  

𝐸𝐸𝑡𝑡 �
𝑤𝑤�𝑡𝑡+1
𝑦𝑦�𝑡𝑡+1

� = 𝐿𝐿 �𝑤𝑤�𝑡𝑡𝑦𝑦�𝑡𝑡
� + 𝑀𝑀𝑡𝑡 �

𝑤𝑤�𝑡𝑡
𝑦𝑦�𝑡𝑡
� (10). 

Notice that lim𝑡𝑡→∞𝑀𝑀𝑡𝑡 = 0. As in the case of rational expectations models with 
constant parameters, it is convenient to transform (10) using the spectral property of 
𝐿𝐿. Namely, the matrix 𝐿𝐿 is transformed into a block-diagonal one  
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𝐿𝐿 = 𝑍𝑍𝑍𝑍𝑍𝑍−1 (11) 

where  

𝑃𝑃 = �𝐴𝐴 0
0 𝐵𝐵� (12) 

where 𝐴𝐴 and 𝐵𝐵 are matrices with eigenvalues larger and smaller than one (in modulus), 
respectively, and 𝑍𝑍 is an invertible matrix. This can be done, for example, by initially 
transforming 𝐿𝐿 into a simple Schur form 𝐿𝐿 = 𝑍𝑍1𝐿𝐿1𝑍𝑍1−1 where 𝑍𝑍1 is a unitary matrix, 
𝐿𝐿1 is an upper triangular Schur form with the eigenvalues along the diagonal (see 
Golub and Van Loan (1996)). We then transform the matrix 𝐿𝐿1 into the block-diagonal 
Schur factorization 𝐿𝐿1 = 𝑍𝑍2𝑃𝑃𝑍𝑍2−1 where 𝑍𝑍2 is an invertible matrix and 𝑃𝑃 is block 
diagonal, and each diagonal block is a quasi upper-triangular Schur matrix. Hence, 
the matrix 𝑍𝑍 in (11) has the form 𝑍𝑍 = 𝑍𝑍1𝑍𝑍2. We also impose the conventional 
Blanchard–Kahn condition (Blanchard and Kahn (1980)) on the dimension of 
unstable subspace, i.e. it is equal to the number of forward-looking variables. 

After introducing the auxiliary variables  

[𝑠𝑠𝑡𝑡 ,𝑢𝑢𝑡𝑡]′ = 𝑍𝑍−1[𝑤𝑤�𝑡𝑡 ,𝑦𝑦�𝑡𝑡]′ (13) 

and pre-multiplying (10) by 𝑍𝑍−1, we have  

𝐸𝐸𝑡𝑡𝑠𝑠𝑡𝑡+1 = 𝐴𝐴𝑠𝑠𝑡𝑡 + 𝑄𝑄11,𝑡𝑡𝑠𝑠𝑡𝑡 + 𝑄𝑄12,𝑡𝑡𝑢𝑢𝑡𝑡, (14) 

𝐸𝐸𝑡𝑡𝑢𝑢𝑡𝑡+1 = 𝐵𝐵𝑢𝑢𝑡𝑡 + 𝑄𝑄21,𝑡𝑡𝑠𝑠𝑡𝑡 + 𝑄𝑄22,𝑡𝑡𝑢𝑢𝑡𝑡, (15) 

where  

�
𝑄𝑄11,𝑡𝑡 𝑄𝑄12,𝑡𝑡
𝑄𝑄21,𝑡𝑡 𝑄𝑄22,𝑡𝑡

� = 𝑍𝑍−1𝑀𝑀𝑡𝑡𝑍𝑍 (16). 

System (14)–(15) is a linear rational expectations model with time-varying 
parameters. The matrix 𝑍𝑍 in (11) can be chosen in such a way that  

∥ 𝐴𝐴 ∥< 𝛼𝛼 + 𝛾𝛾 < 1 and ∥ 𝐵𝐵−1 ∥< 𝛽𝛽 + 𝛾𝛾 < 1 (17) 

where 𝛼𝛼 and 𝛽𝛽 are the largest eigenvalues (in modulus) of the matrices 𝐴𝐴 and 𝐵𝐵−1, 
respectively, and 𝛾𝛾 is arbitrarily small (see Hartmann (1982)). Note also that  
∥ 𝐵𝐵 ∥−1< 1 for sufficiently small 𝛾𝛾.  

Let  

𝐵𝐵𝑡𝑡 = 𝐵𝐵 + 𝑄𝑄22,𝑡𝑡,𝐴𝐴𝑡𝑡 = 𝐴𝐴 + 𝑄𝑄11,𝑡𝑡 (18), 

then (14)–(15) can be rewritten in the form  

𝐸𝐸𝑡𝑡𝑠𝑠𝑡𝑡+1 = 𝐴𝐴𝑡𝑡𝑠𝑠𝑡𝑡 + 𝑄𝑄12,𝑡𝑡𝑢𝑢𝑡𝑡 (19), 

𝐸𝐸𝑡𝑡𝑢𝑢𝑡𝑡+1 = 𝐵𝐵𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑄𝑄21,𝑡𝑡𝑠𝑠𝑡𝑡 (20). 

Assume that 𝑇𝑇 + 1 > 0 is a terminal moment that guarantees the necessary accuracy 
of the solution, (𝑥𝑥𝑡𝑡

(0),𝑦𝑦𝑡𝑡
(0)), 𝑡𝑡 = 0, … ,𝑇𝑇 + 1, to the deterministic problem (2). 
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3. SOLVING THE RATIONAL EXPECTATIONS MODEL WITH TIME-VARYING 
PARAMETERS 

From (20) for the time 𝑇𝑇 we have  

𝑢𝑢𝑇𝑇 = −𝐵𝐵𝑇𝑇−1𝑄𝑄21,𝑇𝑇𝑠𝑠𝑇𝑇 + 𝐵𝐵𝑇𝑇−1𝐸𝐸𝑇𝑇𝑢𝑢𝑇𝑇+1. 

Assume now that by the time 𝑇𝑇 + 1 the solution to the linear rational expectations 
model with time-varying parameters (19)–(20) converges to zero, i.e. 𝐸𝐸𝑇𝑇𝑢𝑢𝑇𝑇+1 = 0. 
Denoting 𝐾𝐾𝑇𝑇,𝑇𝑇 = 𝐵𝐵𝑇𝑇−1𝑄𝑄21,𝑇𝑇 gives  

𝑢𝑢𝑇𝑇 = −𝐾𝐾𝑇𝑇,𝑇𝑇𝑠𝑠𝑇𝑇 (21). 

For 𝑇𝑇 − 1 we have  

𝑢𝑢𝑇𝑇−1 = −𝐵𝐵𝑇𝑇−1−1 𝑄𝑄21,𝑇𝑇−1𝑠𝑠𝑇𝑇−1 + 𝐵𝐵𝑇𝑇−1−1 𝐸𝐸𝑇𝑇−1𝑢𝑢𝑇𝑇 (22). 

Taking conditional expectations at the time 𝑇𝑇 − 1 from both sides (21) and inserting 
𝐸𝐸𝑇𝑇−1𝑠𝑠𝑇𝑇 from (19), we get 

𝐸𝐸𝑇𝑇−1𝑢𝑢𝑇𝑇 = −𝐾𝐾𝑇𝑇,𝑇𝑇(𝐴𝐴𝑇𝑇−1𝑠𝑠𝑇𝑇−1 + 𝑄𝑄12,𝑇𝑇−1𝑢𝑢𝑇𝑇−1) (23). 

Inserting (23) into (22) gives 

𝑢𝑢𝑇𝑇−1 = −𝐵𝐵𝑇𝑇−1−1 𝑄𝑄21,𝑇𝑇−1𝑠𝑠𝑇𝑇−1 + 𝐵𝐵𝑇𝑇−1−1 [−𝐾𝐾𝑇𝑇,𝑇𝑇(𝐴𝐴𝑇𝑇−1𝑠𝑠𝑇𝑇−1 + 𝑄𝑄12,𝑇𝑇−1𝑢𝑢𝑇𝑇−1)]. 

Reshuffling terms, we have  

(𝐼𝐼 + 𝐵𝐵𝑇𝑇−1−1 𝐾𝐾𝑇𝑇,𝑇𝑇𝑄𝑄12,𝑇𝑇−1)𝑢𝑢𝑇𝑇−1 = −𝐵𝐵𝑇𝑇−1−1 (𝑄𝑄21,𝑇𝑇−1 + 𝐾𝐾𝑇𝑇,𝑇𝑇𝐴𝐴𝑇𝑇−1)𝑠𝑠𝑇𝑇−1. (24). 

Multiplying (24) by (𝐼𝐼 + 𝐵𝐵𝑇𝑇−1−1 𝐾𝐾𝑇𝑇,𝑇𝑇𝑄𝑄12,𝑇𝑇−1)−1 yields  

𝑢𝑢𝑇𝑇−1 = −(𝐼𝐼 + 𝐵𝐵𝑇𝑇−1−1 𝐾𝐾𝑇𝑇,𝑇𝑇𝑄𝑄12,𝑇𝑇−1)−1𝐵𝐵𝑇𝑇−1−1 (𝑄𝑄21,𝑇𝑇−1 + 𝐾𝐾𝑇𝑇,𝑇𝑇𝐴𝐴𝑇𝑇−1)𝑠𝑠𝑇𝑇−1. 

Denoting 𝐿𝐿𝑇𝑇,𝑇𝑇−1 = (𝐵𝐵𝑇𝑇−1 + 𝐾𝐾𝑇𝑇,𝑇𝑇𝑄𝑄12,𝑇𝑇−1), we obtain  

𝑢𝑢𝑇𝑇−1 = −𝐿𝐿𝑇𝑇,𝑇𝑇−1
−1 (𝑄𝑄21,𝑇𝑇−1 + 𝐵𝐵𝑇𝑇−1−1 𝐾𝐾𝑇𝑇,𝑇𝑇𝐴𝐴𝑇𝑇−1)𝑠𝑠𝑇𝑇−1. 

Denoting  

𝐾𝐾𝑇𝑇,𝑇𝑇−1 = 𝐿𝐿𝑇𝑇,𝑇𝑇−1
−1 (𝑄𝑄21,𝑇𝑇−1 + 𝐵𝐵𝑇𝑇−1−1 𝐾𝐾𝑇𝑇,𝑇𝑇𝐴𝐴𝑇𝑇−1) 

and  

𝑅𝑅𝑇𝑇−1 = 𝐿𝐿𝑇𝑇,𝑇𝑇−1
−1 (Π2,𝑇𝑇−1 + 𝐾𝐾𝑇𝑇,𝑇𝑇Π1,𝑇𝑇−1 + 𝑅𝑅𝑇𝑇Λ), 

we have  

𝑢𝑢𝑇𝑇−1 = −𝐾𝐾𝑇𝑇,𝑇𝑇−1𝑠𝑠𝑇𝑇−1. 

Proceeding further with backward recursion, we obtain finite-horizon solutions for 
each 𝑡𝑡 = 0,1,2, … ,𝑇𝑇 + 1  

𝑢𝑢𝑡𝑡 = −𝐾𝐾𝑇𝑇,𝑡𝑡𝑠𝑠𝑡𝑡 (25) 

where 𝐾𝐾𝑇𝑇,𝑡𝑡 can be computed by backward recursion  

𝐾𝐾𝑇𝑇,𝑡𝑡 = 𝐿𝐿𝑇𝑇,𝑡𝑡
−1 (𝑄𝑄21,𝑡𝑡 + 𝐵𝐵𝑡𝑡−1𝐾𝐾𝑇𝑇,𝑡𝑡+1𝐴𝐴𝑡𝑡). 
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Inserting (25) into (14) gives  

𝐸𝐸𝑡𝑡𝑠𝑠𝑡𝑡+1 = 𝐴𝐴𝑠𝑠𝑡𝑡 + (𝑄𝑄11,𝑡𝑡+1 − 𝑄𝑄12,𝑡𝑡+1𝐾𝐾𝑇𝑇,𝑡𝑡)𝑠𝑠𝑡𝑡. 

Denoting 𝔸𝔸𝑡𝑡 = 𝐴𝐴𝑡𝑡+1 + 𝑄𝑄11,𝑡𝑡+1 − 𝑄𝑄12,𝑡𝑡+1𝐾𝐾𝑇𝑇,𝑡𝑡 , we have  

𝐸𝐸𝑡𝑡𝑠𝑠𝑡𝑡+1 = 𝔸𝔸𝑡𝑡𝑠𝑠𝑡𝑡 (26). 

It is easy to see that  

�
𝑠𝑠𝑡𝑡+1
𝑢𝑢𝑡𝑡+1� − 𝐸𝐸𝑡𝑡 �

𝑠𝑠𝑡𝑡+1
𝑢𝑢𝑡𝑡+1� = �

ℝ1,𝑡𝑡
ℝ2,𝑡𝑡

� 𝜀𝜀𝑡𝑡+1 = 𝑍𝑍Φ𝑡𝑡
−1𝑓𝑓4,𝑡𝑡𝜎𝜎𝜀𝜀𝑡𝑡+1. 

From (26) it follows that  

(𝐸𝐸𝑡𝑡𝑠𝑠𝑡𝑡+1 − 𝑠𝑠𝑡𝑡+1) + 𝑠𝑠𝑡𝑡+1 = 𝔸𝔸𝑡𝑡𝑠𝑠𝑡𝑡, 

thus we obtain  

𝑠𝑠𝑡𝑡+1 = 𝔸𝔸𝑡𝑡𝑠𝑠𝑡𝑡 + ℝ1,𝑡𝑡𝜀𝜀𝑡𝑡+1 (27). 

Assuming that 𝑠𝑠0 = 0, for 𝑡𝑡 = 1 from (27) we have  

𝑠𝑠1 = ℝ1,0𝜀𝜀1; 

for 𝑡𝑡 = 2  

𝑠𝑠2 = 𝔸𝔸1ℝ1,0𝜀𝜀1 + ℝ1,1𝜀𝜀2. 

Continuing in this fashion, we get the moving-average representation of 𝑠𝑠𝑡𝑡:  

𝑠𝑠𝑡𝑡 = 𝛾𝛾𝑡𝑡,𝑡𝑡𝜀𝜀𝑡𝑡 + 𝛾𝛾𝑡𝑡,𝑡𝑡−1𝜀𝜀𝑡𝑡−1 + ⋯+ 𝛾𝛾𝑡𝑡,2𝜀𝜀2 + 𝛾𝛾𝑡𝑡,1𝜀𝜀1, (28) 

where the coefficients 𝛾𝛾𝑡𝑡,𝑡𝑡−𝑖𝑖 can be obtained by forward recursion 

𝛾𝛾𝑡𝑡,𝑡𝑡 = ℝ1,𝑡𝑡−1, 

𝛾𝛾𝑡𝑡,𝑡𝑡−1 = 𝔸𝔸𝑡𝑡−1𝛾𝛾𝑡𝑡−1,𝑡𝑡−1 

… 

𝛾𝛾𝑡𝑡,𝑡𝑡−𝑖𝑖 = 𝔸𝔸𝑡𝑡−1𝛾𝛾𝑡𝑡−1,𝑡𝑡−𝑖𝑖 

… 

𝛾𝛾𝑡𝑡,1 = 𝔸𝔸𝑡𝑡−1𝛾𝛾𝑡𝑡−1,1. 

For the variable 𝑢𝑢𝑡𝑡 we also have a moving-average representation. Inserting (28) in 
(25), we have  

𝑢𝑢𝑡𝑡 = −𝐾𝐾𝑇𝑇,𝑡𝑡(𝛾𝛾𝑡𝑡,𝑡𝑡𝜀𝜀𝑡𝑡 + ⋯+ 𝛾𝛾𝑡𝑡,1𝜀𝜀1) (29) 

or in the shorter form  

𝑢𝑢𝑡𝑡 = 𝛿𝛿𝑡𝑡,𝑡𝑡𝜀𝜀𝑡𝑡 + 𝛿𝛿𝑡𝑡,𝑡𝑡−1𝜀𝜀𝑡𝑡−1 + ⋯+ 𝛿𝛿𝑡𝑡,2𝜀𝜀2 + 𝛿𝛿𝑡𝑡,1𝜀𝜀1, (30) 

where 𝛿𝛿𝑡𝑡,𝑖𝑖 = −𝐾𝐾𝑇𝑇,𝑡𝑡𝛾𝛾𝑡𝑡,𝑖𝑖. Taking into account that 𝑥𝑥�𝑡𝑡 = 𝑍𝑍11𝑠𝑠𝑡𝑡 + 𝑍𝑍12𝑢𝑢𝑡𝑡 and  
𝑦𝑦�𝑡𝑡 = 𝑍𝑍21𝑠𝑠𝑡𝑡 + 𝑍𝑍22𝑢𝑢𝑡𝑡, we get the moving-average representation for original variables  
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𝑥𝑥�𝑡𝑡 = 𝜌𝜌𝑡𝑡,𝑡𝑡
𝑥𝑥 𝜀𝜀𝑡𝑡 + 𝜌𝜌𝑡𝑡,𝑡𝑡−1

𝑥𝑥 𝜀𝜀𝑡𝑡−1 + ⋯+ 𝜌𝜌𝑡𝑡,2
𝑥𝑥 𝜀𝜀2 + 𝜌𝜌𝑡𝑡,1

𝑥𝑥 𝜀𝜀1, 

𝑦𝑦�𝑡𝑡 = 𝜌𝜌𝑡𝑡,𝑡𝑡
𝑦𝑦 𝜀𝜀𝑡𝑡 + 𝜌𝜌𝑡𝑡,𝑡𝑡−1

𝑦𝑦 𝜀𝜀𝑡𝑡−1 + ⋯+ 𝜌𝜌𝑡𝑡,2
𝑦𝑦 𝜀𝜀2 + 𝜌𝜌𝑡𝑡,1

𝑦𝑦 𝜀𝜀1, 

where 𝜌𝜌𝑡𝑡,𝑖𝑖
𝑥𝑥 = 𝑍𝑍11𝛾𝛾𝑡𝑡,𝑖𝑖 + 𝑍𝑍12𝛿𝛿𝑡𝑡,𝑖𝑖 and 𝜌𝜌𝑡𝑡,𝑖𝑖

𝑦𝑦 = 𝑍𝑍21𝛾𝛾𝑡𝑡,𝑖𝑖 + 𝑍𝑍22𝛿𝛿𝑡𝑡,𝑖𝑖. 

4. EXAMPLE 

To illustrate how the presented method works, we apply it to the DSGE model of trend 
inflation (Ascari and Sbordone (2014)) where the authors show the importance of 
taking into account the non-zero inflation steady state for the dynamical properties of 
the model economy. In this model the representative agent maximizes the 
intertemporal utility function  

max(𝐶𝐶𝑡𝑡,𝑁𝑁𝑡𝑡)𝐸𝐸0 ∑∞
𝑡𝑡=0 𝛽𝛽𝑡𝑡

𝐶𝐶𝑡𝑡
1−𝜎𝜎

1−𝜎𝜎
− 𝑑𝑑𝑛𝑛𝑒𝑒𝜁𝜁

𝑁𝑁𝑡𝑡
1+𝜙𝜙

1+𝜙𝜙
 (31), 

subject to  

𝑃𝑃𝑡𝑡𝐶𝐶𝑡𝑡 + (1 + 𝑖𝑖𝑡𝑡)−1𝐵𝐵𝑡𝑡 = 𝑊𝑊𝑡𝑡𝑁𝑁𝑡𝑡 − 𝑇𝑇𝑡𝑡 + 𝐷𝐷𝑡𝑡 + 𝐵𝐵𝑡𝑡−1 (32) 

where 𝑐𝑐𝑡𝑡 is consumption, 𝑁𝑁𝑡𝑡 is the labour input, 𝑖𝑖𝑡𝑡 is the nominal interest rate, 𝐵𝐵𝑡𝑡 is 
one-period bond holdings, 𝑊𝑊𝑡𝑡 is the nominal wage rate, 𝑇𝑇𝑡𝑡 is lump sum taxes, 𝐷𝐷𝑡𝑡 is 
the profit income, 𝜁𝜁𝑡𝑡 is a labour supply shock, 𝛽𝛽 is the discount factor, and 𝐸𝐸0 is the 
conditional expectations operator. 

Final goods producers use the following technology:  

𝑌𝑌𝑡𝑡 = �∫10 𝑌𝑌𝑖𝑖,𝑡𝑡
𝜀𝜀−1
𝜀𝜀 �

𝜀𝜀
𝜀𝜀−1

 (33). 

Their demand for intermediate goods producers is  

𝑌𝑌𝑖𝑖,𝑡𝑡 = � 𝑃𝑃𝑖𝑖,𝑡𝑡
𝑃𝑃𝑡𝑡+𝑗𝑗

� 𝑌𝑌𝑡𝑡+𝑗𝑗 (34). 

The production function of intermediate goods producers:  

𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑁𝑁𝑖𝑖,𝑡𝑡1−𝛼𝛼 (35). 

𝐴𝐴𝑡𝑡 is an exogenous stationary process for the level of technology.The labour demand 
and the real marginal costs of firm 𝑖𝑖 are:  

𝑁𝑁𝑖𝑖,𝑡𝑡𝑑𝑑 = �𝑌𝑌𝑖𝑖,𝑡𝑡
𝐴𝐴𝑡𝑡
�

1
1−𝛼𝛼 (36), 

𝑀𝑀𝐶𝐶𝑡𝑡 = 𝑊𝑊𝑡𝑡
𝑃𝑃𝑡𝑡

 1
1−𝛼𝛼

 𝐴𝐴𝑡𝑡
1

𝛼𝛼−1 𝑌𝑌𝑖𝑖,𝑡𝑡
𝛼𝛼

1−𝛼𝛼 (37). 

The model is described by the following equations: 
1
𝑌𝑌𝑡𝑡
𝜎𝜎 = 𝛽𝛽𝐸𝐸𝑡𝑡

(1+𝑖𝑖𝑡𝑡)
𝜋𝜋𝑡𝑡+1 𝑌𝑌𝑡𝑡+1

𝜎𝜎  (38), 

𝑊𝑊𝑡𝑡 = 𝑌𝑌𝑡𝑡𝜎𝜎  𝑑𝑑𝑛𝑛 𝑒𝑒𝜁𝜁𝑡𝑡𝑁𝑁𝑡𝑡
𝜑𝜑 (39), 
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𝑝𝑝𝑡𝑡∗ = �1−𝜃𝜃𝜋𝜋𝑡𝑡−1
(1−𝜀𝜀)𝜌𝜌𝜋𝜋𝑡𝑡

𝜀𝜀−1

1−𝜃𝜃
�

1
1−𝜀𝜀

 (40), 

(𝑝𝑝𝑡𝑡∗)
1+ 𝜀𝜀 𝛼𝛼

1−𝛼𝛼 = 𝜀𝜀
(𝜀𝜀−1) (1−𝛼𝛼)

 𝜓𝜓𝑡𝑡
𝜙𝜙𝑡𝑡

 (41), 

𝜓𝜓𝑡𝑡 = 𝑊𝑊𝑡𝑡  𝐴𝐴𝑡𝑡
(−1)
1−𝛼𝛼  𝑌𝑌𝑡𝑡

1
1−𝛼𝛼−𝜎𝜎 + 𝛽𝛽 𝜃𝜃 𝜋𝜋𝑡𝑡

𝜀𝜀 (−𝜌𝜌)
1−𝛼𝛼  𝜋𝜋𝑡𝑡+1

𝜀𝜀
1−𝛼𝛼 𝜓𝜓𝑡𝑡+1 (42), 

𝜙𝜙𝑡𝑡 = 𝑌𝑌𝑡𝑡1−𝜎𝜎 + 𝛽𝛽 𝜃𝜃 𝜋𝜋𝑡𝑡
(1−𝜀𝜀) 𝜌𝜌 𝜋𝜋𝑡𝑡+1𝜀𝜀−1 𝜙𝜙𝑡𝑡+1 (43), 

𝑁𝑁𝑡𝑡 = 𝑠𝑠𝑡𝑡  �𝑌𝑌𝑡𝑡
𝐴𝐴𝑡𝑡
�

1
1−𝛼𝛼 (44), 

𝑠𝑠𝑡𝑡 = (1 − 𝜃𝜃) �𝑝𝑝∗𝑡𝑡�
(−𝜀𝜀)
1−𝛼𝛼 + 𝜃𝜃 (𝜋𝜋𝑡𝑡−1)

𝜌𝜌 (−𝜀𝜀)
1−𝛼𝛼  (𝜋𝜋𝑡𝑡)

𝜀𝜀
1−𝛼𝛼 𝑠𝑠𝑡𝑡−1 (45), 

1+𝑖𝑖𝑡𝑡
1+𝚤𝚤̅

= �1+𝑖𝑖𝑡𝑡−1
1+𝚤𝚤̅

�
𝜌𝜌𝑖𝑖

 ��𝜋𝜋𝑡𝑡
𝜋𝜋�
�
𝜙𝜙𝜋𝜋

 �𝑌𝑌𝑡𝑡
𝑌𝑌�
�
𝜙𝜙𝑦𝑦
�
1−𝜌𝜌𝑖𝑖

 𝑒𝑒𝜈𝜈𝑡𝑡 (46), 

𝑀𝑀𝐶𝐶𝑡𝑡 = 𝑤𝑤𝑡𝑡  1
1−𝛼𝛼

 (𝐴𝐴𝑡𝑡)
1

𝛼𝛼−1 (𝑦𝑦𝑡𝑡)
𝛼𝛼

1−𝛼𝛼 (47), 

(𝑟𝑟𝑡𝑡) = 1+(𝑖𝑖𝑡𝑡)
(𝜋𝜋𝑡𝑡+1)

 (48), 

𝑈𝑈𝑡𝑡 = 𝑦𝑦𝑡𝑡 −
𝑑𝑑𝑛𝑛 (𝜁𝜁𝑡𝑡) (𝑁𝑁𝑡𝑡)1+𝜑𝜑

1+𝜑𝜑
+ 𝛽𝛽 𝑈𝑈𝑡𝑡+1 (49), 

𝜈𝜈𝑡𝑡 = 𝜌𝜌𝜈𝜈  𝜈𝜈𝑡𝑡−1 + 𝜀𝜀𝜈𝜈𝑡𝑡 (50), 

𝐴𝐴𝑡𝑡 = 𝜌𝜌𝑎𝑎 𝐴𝐴𝑡𝑡−1 + 𝜀𝜀𝐴𝐴𝑡𝑡 (51), 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁  𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁𝑡𝑡 (52), 

�𝐴̃𝐴𝑡𝑡� = (𝐴𝐴𝑡𝑡)
(𝑠𝑠𝑡𝑡)

 (53). 

The calibrated parameters follow Ascari and Sbordone (2014): σ = 1, ϕ = 1 and 3,  
ε = 10, ϕπ = 2, ϕY = 0.5/4, β = 0.99, θ = 0.75 and ρi = 0.8. The calibrated parameters 
are given in Table 1. 

Table 1  
Calibrated parameters 

𝜎𝜎 𝜙𝜙 𝜀𝜀 𝜙𝜙𝜋𝜋 𝜙𝜙𝑌𝑌 𝛽𝛽 𝜃𝜃 𝜌𝜌𝑖𝑖 
1 2 10 2 0.125 0.99 0.75 0.8 

 
The deterministic solution is obtained for the economy with initial point at the nominal 
interest rate 𝑖𝑖0 = 0 (all other state variables are at their steady state). This economic 
condition corresponds to the current situation in the advanced countries. We do not 
model the effective lower bound for the short-term nominal interest rate, assuming 
that this bound lies low enough below zero.  

We consider the IRFs of the inflation rate to the negative 0.1% interest rate shock for 
three values of inflation steady state: 0%, 2% and 4%. Choosing the 4% steady state 
inflation is related to a recent debate on the proposal by some researchers (Blanchard 
et al. (2010) and Williams (2009) and Ball (2013)) to adopt a 4% inflation target in 
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the United States of America in order to mitigate the zero bound constraint.1 Note that 
it is the usual practice in DSGE modeling for monetary analysis to assign the steady 
state value of the inflation rate to zero. We compare the IRFs obtained from three 
methods: (a) linearization around the steady state, (b) the third order Taylor series 
approximation around the deterministic steady state, and (c) the state-depended global 
GIRFs. In the case of the third order Taylor series, approximation of the GIRF is 
constructed as a difference between shocked and unshocked solutions both having the 
same initial conditions corresponding to the nominal interest rate 𝑖𝑖0 = 0. For this 
purpose, we use the Dynare command simult_ that allows for constructing Taylor 
series approximate solution starting from a given point and shocked by given 
innovations. 

Figures 1–3 show the IRF of inflation rate to the 0.1% negative interest rate shock 
for various steady state inflation rates and the Frish elasticity, φ, equal to 1 (left 
panel) and 3 (right panel). For all steady states of the inflation rate, the reaction of 
inflation to the interest rate shock is considerably smaller for the case of 
linearization around the deterministic solution than for linearization and the third 
order Taylor approximation around the steady state. This difference increases with 
the steady state inflation rate rising. The relative differences between shocks of 
the linearized around the steady state model and that linearized around the 
deterministic solution at t = 1 for φ = 1 is 34%, 57% and 84% for the steady state 
inflation rates of 0%, 2% and 4%, respectively; whereas for φ = 3 these figures are 
45%, 93% and 171%, respectively. The relative differences between shocks of the 
linearised around the deterministic solution and the third order approximation 
around the steady state at t = 1 for φ = 1 is 23%, 36% and 46% for the steady state 
inflation rates of 0%, 2% and 4%, respectively; whereas for φ = 3 these figures are 
36%, 67% and 91%, respectively. The difference is quite large for the steady state 
inflation of 4% for both values of φ. On the other hand, the higher value of the 
Frish elasticity implies the larger relative difference between two shocks due to 
the higher degree of model nonlinearity. 

The IRF becomes also more persistent with a higher Frish elasticity coefficient. 
For φ = 3 and the steady state inflation 4% in the case of model linearized around 
the deterministic solution even the pattern of IRF changes. It becomes hump-
shaped, whereas for perturbations around the steady state it remains monotonically 
decreasing. The difference between the first order and third order approximations 
is quite small for the steady state inflation of 0% and 2%. 

Ascari and Sbordone (2014) show that because of the flattening of the Phillips 
curve with higher steady state inflation, at the time t = 1, the sensitivity of inflation 
to an interest rate shock is reduced. It follows from our results that this observation 
is more pronounced if the initial conditions are not the steady state. Therefore, in 
the case of perturbation around the deterministic solution the inflation rate is less 
sensitive to an interest rate shock than in the case of perturbation around the steady 
state at the time t = 1, if an economy stays at the zero short-term interest rate even 
without consideration of the effect of the lower bound for the nominal interest rate. 

  

 
1 The same values of inflation steady state are used in Ascari and Sbordone (2014). 
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Figure 1 
Steady state inflation 0% 

 

Notes. IRFs for inflation to the 0.1% negative interest rate shock for steady state inflation 0% and the Frish 
elasticities φ = 1 (left panel) and 3 (right panel). The dashed blue line is the IRFs for the model linearized 
around the steady state, the solid orange line is IRFs for the model linearized around the deterministic solution.  

Figure 2 
Steady state inflation 2% 

 

Notes. IRFs for inflation to the 0.1% negative interest rate shock for steady state inflation 2% and the Frish 
elasticities φ = 1 (left panel) and 3 (right panel). The dashed blue line is the IRFs for the model linearized 
around the steady state, the solid orange line is IRFs for the model linearized around the deterministic solution. 

  



GENERALISED IMPULSE RESPONSE FUNCTION AS A PERTURBATION OF A GLOBAL SOLUTION TO DSGE MODELS 
 

 

 

14 

Figure 3 
Steady state inflation 4% 

 

Notes. IRFs for inflation to the 0.1% negative interest rate shock for steady state inflation 4% and the Frish 
elasticities φ = 1 (left panel) and 3 (right panel). The dashed blue line is the IRFs for the model linearized 
around the steady state, the solid orange line is IRFs for the model linearized around the deterministic solution. 

5. CONCLUSIONS 

This study proposes an approach based on a perturbation around a deterministic path 
for constructing GIRF for DSGE models. The approach allows for dealing with highly 
nonlinear models and situations where initial conditions are far away from the steady 
state. Under the assumption that the deterministic solution to the model is already 
found, the method reduces the problem to solving recursively a linear rational 
expectations model with deterministic time-varying parameters. The approach is 
applied to the DSGE model with the inflation trend and zero initial value for interest 
rate. The results show that the difference in impulse response functions is significant 
if we take account of the initial value of the economy. The model framework is quite 
suitable for estimation by the Kalman filter with deterministic time-varying 
coefficients. 
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