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SURE – Seemingly Unrelated Regression Equations 
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ABSTRACT 

This paper re-examines the findings of Stock and Watson (2012b) who assessed the 
predictive performance of DFMs over AR benchmarks for hundreds of target 
variables by focusing on possible business cycle performance asymmetries in the 
spirit of Chauvet and Potter (2013) and Siliverstovs (2017a; 2017b; 2020). Our 
forecasting experiment is based on a novel big macroeconomic dataset (FRED-QD) 
comprising over 200 quarterly indicators for almost 60 years (1960–2018; see, e.g. 
McCracken and Ng (2019b)). Our results are consistent with this nascent state-
dependent evaluation literature and generalize their relevance to a large number of 
indicators. We document systematic model performance differences across business 
cycles (longitudinal) as well as variable groups (cross-sectional). While the absolute 
size of prediction errors tend to be larger in busts than in booms for both DFMs and 
ARs, DFMs relative improvement over ARs is typically large and statistically 
significant during recessions but not during expansions (see, e.g. Chauvet and Potter 
(2013)). Our findings further suggest that the widespread practice of relying on full 
sample forecast evaluation metrics may not be ideal, i.e. for at least two thirds of all 
216 macroeconomic indicators full sample rRMSFEs systematically over-estimate 
performance in expansionary subsamples and under-estimate it in recessionary 
subsamples (see, e.g. Siliverstovs (2017a; 2020)). These findings are robust to several 
alternative specifications and have high practical relevance for both consumers and 
producers of model-based economic forecasts. 

Keywords: forecast evaluation, dynamic factor models, business cycle asymmetries, 
big macroeconomic datasets, US 

JEL codes: C32, C45, C52, E17 
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1. INTRODUCTION 

Over the past two decades, the forecasting literature proposed numerous econometric 
approaches to account for time-series peculiarities across business cycles, such as 
regime shifts, non-linear dynamics, non-Gaussianity and stochastic volatility to name 
a few (see, e.g. Chan (2017), Chan and Hsiao (2014), Koop and Korobilis (2010), 
Stock and Watson (2016; 2017) and Teräsvirta (2018) for comprehensive recent 
discussions). While these advances yielded improvements for in-sample estimations 
of forecasting models, the forecasting literature has so far devoted less attention to the 
very same kind of business cycle asymmetries for the out-of-sample performance 
evaluations of forecasting models (see Siliverstovs (2020)). 

Recently, however, a burgeoning literature started to account for possible 
performance differences between distinct phases of the business cycle. In a notable 
chapter "Forecasting Output" in the Handbook of Economic Forecasting, Chauvet and 
Potter (2013) challenge the widespread standard of assessing models' forecasting 
performance in terms of simple averages over the full evaluation period because it 
implicitly discards possible business cycle-related performance asymmetries and may 
obscure potential differences in predictive performance (see also Siliverstovs 
(2017a)). Chauvet and Potter (2013) therefore complement their full sample 
assessments with evaluations that examine a model's performance for both 
expansionary and recessionary subsamples separately and find systematic 
performance differences between these phases of the business cycle for a large number 
of frequently employed macroeconomic forecasting models. Their forecasting 
exercise of US GDP growth over pre- and post-millennial years (1992–2011) yields 
two main conclusions: on the one hand, they find recessionary periods to be generally 
harder to predict than the expansionary ones as the models typically produce larger 
absolute forecasting errors in the former rather than latter periods. On the other hand, 
they show the relative improvement of sophisticated forecasting models over AR 
benchmarks to be typically much more pronounced in bust than in boom cycles. In 
fact, they find that during booming periods the performance of sophisticated models 
is often identical to that of simple AR benchmarks or even worse (see also, e.g. Fossati 
(2018), Kim and Swanson (2016) for related findings and discussions). 

These asymmetries were recently corroborated in Siliverstovs (2020) who extends 
Chauvet and Potter (2013)'s single-frequency data setting with point forecasts to a 
mixed-frequency environment with both point and density forecasts. Likewise, 
Siliverstovs (2017b) extends the subsample evaluation for booms and busts to 10 
industrialized countries when assessing the predictability of excess returns of stock 
markets. Siliverstovs (2017a; 2020) refines Chauvet and Potter (2013)'s subsample 
analyses (which we will refer to as 'meso' level) even further by opening the time 
dimension to the full extent and employing evaluation metrics that assess the 
contribution of each individual time period ('micro' level) to the overall predictive 
performance. 

More generally, our paper also relates to the literature on forecasting under instability. 
Rossi (2013) provides a comprehensive overview of common findings in the 
forecasting literature and reviews numerous techniques to diagnose and tackle 
forecasting in the presence of instabilities. The author discusses forecasting 
performance asymmetries for a few series on a case-by-case basis (see Rossi (2013, 
p. 1223 ff.), while the recent macroeconomic forecasting literature has started to 
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examine model performance not only for a single but dozens or even hundreds of 
macroeconomic target variables (Korobilis (2017), Pesaran et al. (2011), Stock and 
Watson (2012b)). However, this multi-target literature has so far devoted only little 
attention to potential business cycle-related asymmetries in their forecast evaluations 
(see Siliverstovs (2020)), and the literature lacks a systematic and thorough state-
dependent forecast evaluation for a broad number of different macroeconomic 
indicators. 

We close this gap in the literature by bridging these distinct strands of the literature 
and perform a direct forecasting experiment in (quasi) real-time for quarterly, semi-
annual and annual forecasting horizons based on a novel large-scale macroeconomic 
dataset of the US economy (FRED-QD) with 216 indicators over almost 60 years 
(1960–2018) (see, e.g. McCracken (2019), McCracken and Ng (2019b)). We will 
focus on DFMs, which constitute a leading class of forecasting models for large 
macroeconomic datasets and were repeatedly shown to perform well in a range of 
settings and against a range of competing approaches (see, e.g. Stock and Watson 
(2012b; 2017), Korobilis (2017), Chauvet and Potter (2013) and references therein; 
see also Stock and Watson (2006; 2016)). Hence, this paper advances the current state 
of research in three main ways. First, we contribute to the nascent boom and bust 
evaluation literature by extending the analyses of Chauvet and Potter (2013) and 
Siliverstovs (2017a; 2017b; 2020) with systematic assessments of dynamic factor 
models for not only a single but over 200 US macroeconomic indicators. This allows 
us to examine whether their findings can be generalized to alternative key indicators 
(e.g. unemployment rate, inflation, exports) as well as entire groups of 
macroeconomic indicators (e.g. interest rates, housing, industrial production). Second, 
the paper advances the recent factor model literature on multiple target variables 
(Korobilis (2017), Pesaran et al. (2011), Stock and Watson (2012b)) by evaluating the 
models' forecasting performance separately for booms and busts rather than the full 
sample. We may therefore determine the sources of predictive performance in greater 
granularity than previous studies. Third, multi-period ahead direct forecasting models 
with AR predictors typically suffer from inconsistent and inefficient estimation 
because overlaps in datasets cause serial dependencies among the model's residuals 
(Pesaran et al. (2011)). While most studies above did not explicitly account for these 
issues, we will examine to what extent the results are affected as we address these 
serial correlations with the GLS-based SURE estimation procedure of Pesaran et al. 
(2011). 

On the whole, our results are consistent with the recent business cycle-related 
evaluation literature (e.g. Chauvet and Potter (2013), Siliverstovs (2017a; 2017b; 
2020), also Stock and Watson (2011)) and extend their relevance to a large number of 
macroeconomic indicators in general as well as to a few selected leading indicators in 
particular. Specifically, we find systematic model performance differences across 
phases of business cycles (longitudinal) as well as different groups of variables (cross-
sectional). For a majority of series, we find dynamic factor models to achieve strong 
and statistically significant improvements over benchmarks during recessionary but 
not during expansionary periods (see, e.g. Chauvet and Potter (2013), Siliverstovs 
(2017b)). Performance metrics and tests for the full sample thus tend to be decisively 
distorted towards the performance in recessions and may qualify models as overall 
significantly superior to the benchmark when they are in fact inferior most of the time 
(see, e.g. Siliverstovs (2020) and Fossati (2018)). In light of the importance of 
forecasts for policy decision making (Wieland and Wolters (2013)), the disregard of 
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such asymmetries may lead to suboptimal or even erroneous decisions, which matters 
to executives and researchers at governments, central banks and businesses alike (see 
Siliverstovs (2017a; 2020)). 

The remainder of this paper is organized as follows: Section 2 describes the dataset 
and relevant data pre-processing steps. Section 3 lays out the formal forecasting 
framework and predictive models, the estimation and evaluation methods used and 
builds mainly upon Stock and Watson (2012b), Chauvet and Potter (2013) and 
Siliverstovs (2017a; 2017b; 2020). Section 4 systematically assesses the results of the 
forecasting experiment for the main model specification on three different levels of 
granularity (macro, meso and micro level). Section 4 also shows the results for the 
extended specification using the SURE estimator as well as multiple robustness 
checks to the main specification. Section 5 concludes and provides directions for 
future research. 

2. DATA 

2.1 Observations and variables 

The analysis is based on the FRED provided by the Federal Reserve Bank of St. Louis. 
Specifically, we employ the novel quarterly dataset FRED-QD (see McCracken 
(2019), McCracken and Ng (2019b); for the monthly series, see McCracken and Ng 
(2016; 2019a)).1 This dataset comprises over two hundred macroeconomic indicators 
for the US and aims to provide researchers' access to a regularly updated version of 
the Stock and Watson (2012a) dataset (see discussions in McCracken (2019) and 
McCracken and Ng (2016)). 

Three common data transformations were applied prior to empirical analysis. First, 
following Korobilis (2017) (who also employed the FRED-QD dataset) and Stock and 
Watson (2012b), we apply distinct stationarity transformations for independent and 
dependent variables (see Table A.1). The specific transformations are directly 
suggested in McCracken and Ng (2019b). Second, to cope with the unbalanced nature 
of the dataset, indicators whose data were not available in the first quarter of 1960 or 
had ragged edges were not considered. Finally, the dataset is cleaned for outliers as 
proposed by Stock and Watson (2012b) (see their online appendix).2 There were 106, 
106, 90 and 63 outliers corrected in ܆௧, ܇௧ାଵ

ሺଵሻ ௧ାଶ܇ ,
ሺଶሻ  and ܇௧ାସ

ሺସሻ  respectively – which 
amounts to less than 0.25% of observations of the whole dataset. 

These data preparations yield a balanced dataset that contains K = 216 variables over 
T = 233 quarters (from the second quarter of 1960 to the second quarter of 2018). 
McCracken and Ng (2019b) divide these 216 indicators into 14 distinct and 
differently-sized groups as displayed in Table 1. 

  

 
1 The dataset is novel in that it was released as part of their new service (launched in May 2018) for real-time 
updates of their quarterly dataset FRED-QD (see McCracken (2019)). 
2 Specifically, they propose to classify an observation of the stationarity transformed series as an outlier if its 
absolute median deviation is larger than six times the series' interquartile range and were then replaced by the 
median of the previous five values (see Stock and Watson (2012b), online appendix, Section B). 
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Table 1  
FRED-QD time series groups 

Group Group name Number of 
time series

G1 National Income and Product Accounts (NIPAs) 22
G2 Industrial Production 15
G3 Employment and Unemployment 44
G4 Housing 11
G5 Inventories, Orders and Sales 6
G6 Prices 46
G7 Earnings and Productivity 10
G8 Interest Rates 18
G9 Money and Credit 14
G10 Households Balance Sheets 9
G11 Exchange Rates 4
G12 Other 1
G13 Stock Prices 5
G14 Non-household Balance Sheets 11

ALL Total 216

Notes. This table illustrates how the 216 variables used for the analysis are subsumed into 14 distinct groups 
according to McCracken and Ng (2019b). The table provides the group abbreviations used, group names and 
the number of time series belonging to each group. For certain tables and graphical illustrations below, the 
mnemonics of each series were augmented by their group abbreviations, e.g. the indicator for real 
Gross Domestic Product GDPC1 becomes G1 GDPC1. 

2.2 Recessions and expansions 

In line with the state-dependent forecast evaluation literature (e.g. Chauvet and Potter 
(2013)), we divide the full sample into recessionary and expansionary subsamples by 
employing the definitions of peaks and troughs provided by the Business Cycle 
Committee of the NBER.3 

For one-quarter ahead predictions, our definitions of recessions and expansions 
correspond exactly to the ones of NBER. However, as we not only applied the 
stationarity transformations to the independent but also the dependent variables, the 
recession and expansion dates ought to be suitably adjusted at higher forecasting 
horizons. To see this, consider Figure 1a, which displays the stationarity transformed 
series of real GDP over the period of the 2008 financial crisis for all forecasting 
horizons. As shown in Figure 1a, the trough of the stationarity transformed series 
shifts to the right as h increases. While the original definition of NBER recessions 
captures the crisis fairly well for h = 1, it does less well for h = 2 and h = 4.4 

Based on these considerations, at least two adjustments of the NBER recession 
definitions appear sensible. Our first alternative extends the NBER recession end-date 
by (h − 1) quarters to the right, such that the recession windows grow as h increases 
(hereafter, the "growing" adjustment). The resulting recession window is depicted in 
Figure 1b for h = 4 and shows a greater ability to reflect the prolonged period of crisis 
than the original version in Figure 1a. Moreover, it has an additional benefit of 
increasing the limited number of recessionary time periods for a few additional 

3 Source: https://www.nber.org/cycles.html. Observe that we will use the notions of recessions, busts, 
downturns and contractions as well as expansions, booms, upswings and growth periods synonymously. 
4 For h = 8 (not shown in Figure 1a), the trough would even lie beyond the NBER dated recessionary window, 
which is clearly sub-optimal. 



R E C E S S I O N S  A S  B R E A D W I N N E R  F O R  F O R E C A S T E R S  S T A T E - D E P E N D E N T  E V A L U A T I O N    2 /2 0 2 0  
O F  P R E D I C T IV E  A B I L I T Y :  E V I D E N C E  F R O M  B I G  M A C R O E C O N O MI C  U S  D A T A  

 

 

 

9 

observations. As a second alternative, rather than growing the window, we may shift 
both the start- and end-periods of the original NBER recession (h − 1) periods ahead 
(hereafter, the "shifting" adjustment). This variant is depicted in Figure 1c. While we 
will examine all three versions (without growing and shifting adjustments) and show 
robustness of the results for each of them (see Subsection 4.3.1), the main results are 
based on the first alternative in which all recessionary periods in the forecasting 
window are grown. The expansionary periods then correspond to the remaining 
observations in the forecasting window. 

3. FORECASTING FRAMEWORK 

3.1 Notation and setup 

For the formal description of the forecasting exercise, we borrow the notation and 
methodical conventions applied in the relevant literature (see, e.g. Chauvet and Potter 
(2013), McCracken (2007), Pesaran et al. (2011), Stock and Watson (2006; 2012b; 
2016), Kim and Swanson (2014), Siliverstovs (2017a; 2020) among many others). Let 
ݐ ∈ ሼ1,… ,ܶሽ be the quarterly time index and ݄ ∈ ሼ1,2,4ሽ the quarterly forecasting 
horizon. The analyses divide the timeline into an estimation window (from the second 
quarter of 1960 to the fourth quarter of 1984) and a forecasting window (from the first 
quarter of 1985 to the second quarter of 2018). Let ܵ denote the last observation of 
the first estimation window (the fourth quarter of 1984, ܵ ൌ 99). Under a recursively 
expanding estimation scheme, it contains observations ݐ ∈ ࣭௘ ൌ ሼ1൅ ݄, … , ߬ሽ with 
߬ ∈ ሼܵ, ܵ ൅ 1, … ,ܶ െ ݄ሽ,whereas a rolling estimation scheme keeps the estimation 
window at a fixed length. We distinguish two different forecasting windows: the 
forecasting window containing the target date observations is given as ݐ ∈ ௙࣭

௧ ൌ ሼܵ ൅
݄, … ,ܶሽ and the forecasting window containing the time periods at which the forecasts 
are originated is ݐ ∈ ௙࣭

௢ ൌ ሼܵ ൅ 1,… ,ܶ െ ݄ ൅ 1ሽ. The forecasting windows are of size 
ܲ ൌ | ௙࣭

௧| ൌ | ௙࣭
௢| ൌ ܶ െ ሺܵ ൅ ݄ሻ ൅ 1 where | ⋅ | denotes the cardinality of set ௙࣭. The 

recessionary periods are determined according to our previous discussion (see 
Subsection 2.2) and denoted as ௙࣭,௥௘௖

௧  and ௙࣭,௥௘௖
௢  respectively. The set of expansionary 

periods is then given as the remaining set of observations, ௙࣭,௘௫௣
௧ ൌ ௙࣭

௧\ ௙࣭,௥௘௖
௧  and 

௙࣭,௘௫௣
௢ ൌ ௙࣭

௢\ ௙࣭,௥௘௖
௢ . 

Concerning the variables, let ܈௧
ሺ௛ሻ ൌ ሺ ௧ܻ

ሺ௛ሻ,܅௧ሻ ∈ Թ௄ designate the vector of 
stationarity transformed values of the 216 indicators in period ݐ (vectors and matrices 

are consistently denoted in bold letters). Let the ݇-th variable in ܈௧
ሺ௛ሻ be the dependent 

variable, ௧ܻ
ሺ௛ሻ ൌ ܼ௞,௧

ሺ௛ሻ, and the remaining ones the independent variables, ܅௧ ൌ ௞,௧ି܈
ሺ௛ሻ , 

with index െ݇ indicating all but the ݇-th variable. 

In line with Stock and Watson (2012b), we avoid double counting and extract the 
common factors only from non-aggregated, lower-level variables. Hence, the set of 
independent variables ܅௧ ൌ ሺ܆௧,܆෩௧ሻ can further be subdivided into 102 series, ܆௧ is 
used to derive the common factors and the remaining 113 series in ܆෩௧ (assuming that 
the current dependent variable ݇ is an aggregated variable; otherwise there are 101 
series in ܆௧ and 114 in ܆෩௧; mccrackenng2019online_QD explicitly indicate which 
indicators belong to ܆௧ and ܆෩ respectively). As each of the 216 variables will serve as 
a dependent variable, the ܆෩௧ will not be used for factor estimation for the current ݇ 
but will only serve as dependent variables for alternative ݇. Finally, as a result of the 
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distinct stationarity transformations for dependent and independent variables (see 
Table 14), the super-index ሺ݄ሻ indicates the base frequency measurement arising from 
݄-quarter stationarity transformation of the dependent variable (e.g. quarterly, semi-
annual, annual growth rates for ݄ ൌ 1,݄ ൌ 2,݄ ൌ 4 respectively; see Korobilis 
(2017), Stock and Watson (2012b)). As explained above, the observable right-hand-
side variables, instead, are all measured on a quarterly basis. 

Figure 1 
Recession adjustments 

 
Notes. Recessionary periods are highlighted in grey. Subfigure (a) shows the stationarity transformed series of real GDP from the 
FRED-QD dataset (FRED-QD mnemonic: GDPC1) over the period of the 2008 financial crisis for all forecasting horizons and the 
original NBER recessions as grey shaded areas (no adjustment). Subfigures (b) and (c), instead, show the NBER recessions for 
'growing' and 'shifting' adjustments proposed in Subsection 2.2. 

3.2 Forecasting models 

While the literature has put forth a comprehensive number of forecasting models, we 
devote our attention to factor-augmented models, which consistently show good 
empirical performance, particularly in high-dimensional settings (see Chauvet and 
Potter (2013), Stock and Watson (2012b; 2017) for comprehensive discussions). For 
the formulation of our main two forecasting models, their estimation and evaluation, 
we follow primarily Stock and Watson (2012b) and construct direct h-period ahead 
forecasts, ෠ܻ௧ା௛

ሺ௛ሻ , from AR factor-augmented models (DFM5) and AR benchmarks 
(AR4). Popular alternative benchmark specifications are considered as extensions to 
these two main models: namely, the HMN (Siliverstovs (2017b)), univariate AR 
process (AR1) (Korobilis (2017)) as well as CADL models (Kim and Swanson 
(2014)). 

3.2.1 Factor models 

Autoregressive factor-augmented model (DFM5) 
The AR factor-augmented model is given as  

௧ܻା௛
ሺ௛ሻ ൌ ߮ ൅ ∑௉ିଵ

௣ୀ଴ ߶௣ ௧ܻି௣
ሺଵሻ ൅ ∑ோ

௥ୀଵ ߰௥ܨ௥,௧
ሺଵሻ ൅ ௧ା௛ߝ

ሺ௛ሻ     (1) 
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where ௧ܻା௛
ሺ௛ሻ  denotes the ݄-period ahead value of the dependent variable, ௧ܻି௣

ሺଵሻ  – the ݌th 

AR lag, ܨ௥,௧
ሺଵሻ – the ݎ-th common factor and ߝ௧ା௛

ሺ௛ሻ  – the stochastic error term (see, e.g. 
Korobilis (2017), Stock and Watson (2002a; 2002b; 2006; 2012b)). The factors can 
be estimated and derived as the first R principal components, ܨ෠௥,௧

ሺଵሻ standardized (mean 

zero, unit variance) set of predictors ܆௧
ሺଵሻ (see Stock and Watson (2012b), also Stock 

and Watson (2006; 2016; R Core Team (2019) for implementation). 

Our main results are based on a specification with P = 4 AR terms and R = 5 factors 
(AR4-DFM5 or simply DFM5); alternative specifications are considered as 
extensions to this main model. 

3.2.2 Benchmark models 

Autoregressive benchmark model (AR4, AR1) 
To assess the performance of the DFM5 against univariate AR processes, define  

௧ܻା௛
ሺ௛ሻ ൌ ߮ ൅ ∑௉ିଵ

௣ୀ଴ ߶௣ ௧ܻି௣
ሺଵሻ ൅ ௧ା௛ߝ

ሺ௛ሻ    (2) 

with P = 4 lags, such that the main AR4 benchmark model is nested in the DFM5 
above (see, e.g. Stock and Watson (2012b)). Moreover, we will also consider P = 1 as 
an extension to enhance comparison of the results with Korobilis (2017) who uses 
AR1 benchmarks. 

HMN model  
The HMN model is a simple and robust benchmark specification: 

௧ܻା௛
ሺ௛ሻ ൌ ߮ ൅ ௧ା௛ߝ

ሺ௛ሻ     (3) 

and corresponds to the reduced form of an AR benchmark with P = 0 AR terms (see, 
e.g. Hill et al. (2011), Siliverstovs (2017b)). 

CADL model 
While the previous benchmarks in equations (2) and (3) are exclusively based on 
information from the target variable itself, the CADL benchmark additionally 
incorporates contemporaneous information on the predictors ܆௧ by combining 
forecasts of multiple AR distributed lag models, each of which is augmented with a 
single predictor (see Kim and Swanson (2014)). Formally, the CADL model can be 
defined as:  

௧ܻା௛
ሺ௛ሻ ൌ ∑௄

௞ୀଵ ߱௞ ෠ܻ௞,௧ା௛
ሺ௛ሻ ൅ ௧ା௛ߝ

ሺ௛ሻ ,				 ෠ܻ௞,௧ା௛
ሺ௛ሻ ൌ ߮ ൅ ∑௉ିଵ

௣ୀ଴ ߶௣ ௧ܻି௣
ሺଵሻ ൅ ௞ܺ௞,௧ߚ

ሺଵሻ (4) 

where the predictions of each AR distributed lag model, ෠ܻ௞,௧ା௛
ሺ௛ሻ , are equally weighted 

with ߱௞ ൌ ߱ ൌ ܲ and ܭ/1 ൌ 4 (see Kim and Swanson (2014)). 

3.3 Model estimation 

3.3.1 OLS estimation 

In accord with most of the relevant literature above (see, e.g. Kim and Swanson 
(2014), Korobilis (2017), Siliverstovs (2017b), Stock and Watson (2012b)), our main 
results will estimate the forecasting models via OLS, the factors are re-estimated and 
the forecasting models in equations (1) to (4) are updated for every vintage date in the 
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forecasting window, ݐ ∈ ௙࣭
௢, each forecasting horizon, ݄ ∈ ሼ1,2,4ሽ, and every target 

variable, ݇ ∈ ሼ1,…  .ሽܭ,

3.3.2 SURE estimation 

While the OLS-based estimation allows us to compare our results with Stock and 
Watson (2012b) in particular and the existing literature in general, the model 
parameters may neither be consistently nor efficiently estimated (Pesaran et al. 
(2011)). This is because the overlaps of datasets for direct multi-step ahead predictions 
(h > 1) induce serially dependent error terms with an MA(h − 1) structure in our main 
equations (1) and (2) (Pesaran et al. (2011), PPT heretofore). To remove the serial 
dependence in the errors, we employ PPT's SURE estimator. Their GLS-based 
estimator offers not only attractive statistical properties of asymptotic consistency and 
efficiency but also provides a fairly simple implementation, which is mainly based on 
re-ordering of observations (to re-establish consistency) and pooled estimation that 
exploits the cross-dependence of errors (to re-establish efficiency) (see Pesaran et al. 
(2011), Section 3 for details).5 Notice, for h = 1 the errors do not exhibit a serial 
dependence and the OLS and SURE estimators are equivalent (see Pesaran et al. 
(2011)). 

3.4 Model evaluation 

The estimated models ݉ ∈ ሼ1,…  ሽ are used to derive ݄-period ahead out-of-sampleܯ,
forecasts, ෠ܻ௧ା௛,௠

ሺ௛ሻ , for each forecast origin in the forecasting window, ݐ ∈ ௙࣭
௢ (see, e.g. 

Siliverstovs (2017b), Stock and Watson (2012b)). The accuracies of these predictions 
will then be assessed on three different levels of temporal granularity (macro, meso, 
micro) as outlined below. 

3.4.1 Macro level: Aggregate accuracy measures 

We assess the absolute forecasting performance of model ݉ in terms of its RMSFE:  

RMSFE௠
ሺ௛ሻ ൌ ቂ

ଵ

ሺ்ି௛ሻିௌାଵ
∑்ି௛
௧ୀௌ ሺ ௧ܻା௛

ሺ௛ሻ െ ෠ܻ
௧ା௛,௠
ሺ௛ሻ ሻଶቃ

ଵ/ଶ
     (5) 

(Korobilis (2017), Stock and Watson (2012b)). The forecasting performance of the 
݉-th model is assessed against the ܾ-th benchmark with rRMSFE:  

rRMSFE௠,௕
ሺ௛ሻ ൌ

ୖ୑ୗ୊୉೘
ሺ೓ሻ

ୖ୑ୗ୊୉್
ሺ೓ሻ (6) 

 
5 Our implementation of the SURE estimator's covariance matrix, ߜ௛ሺℓሻ, uses Bartlett weights, which are 

given as ߱௛ሺℓሻ ൌ 1െ 1ሼ௛வଵሽℓ/ሺ݄ ൅ 1ሻ (with ℓ ∈ ሼ0,1, … , ݄ሽ, denoting the lag and 1ሼ௛வଵሽ as binary indicator 

function equal to one if ݄ ൐ 1 and zero else (see, e.g. Newey and West (1994, p. 640)) in order to down-weigh 
the auto-covariances of the error terms, ߛ௛ሺℓሻ, for ݄ ൐ 1, as suggested in Pesaran et al. (2011, p. 176). The 

auto-covariances between ߝ௧ା௛
ሺ௛ሻ  and ߝ௧ା௛ିℓ

ሺ௛ሻ  can be consistently estimated via ߛො௛ሺℓሻ ൌ 1/߬ ∑ఛ௧ୀଵ ௧̂ା௛ߝ
ሺ௛ሻ ௧̂ା௛ିℓߝ

ሺ௛ሻ  

(ibid., p. 176; notice: should the variances still be negative despite down-weighting, the SURE estimator was 
re-estimated by dropping the first observation of the sample until the variances are non-negative). Hence, the 
auto-covariances used in our implementation are given as ߜ௛ሺℓ, ݄ሻ ൌ ߱௛ሺℓሻߛ௛ሺℓሻ. 
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for ܾ ∈ ሼ1,… ,ሽܯ, ܾ ് ݉ and rRMSFE௠,௕
ሺ௛ሻ ൏ 1 indicates superior average 

performance of model ݉ compared to model ܾ; and vice versa for rRMSFE௠,௕
ሺ௛ሻ ൐ 1 

(see, e.g. Siliverstovs (2017a; 2020), Stock and Watson (2006)). 

Additionally, we may decompose the MSFE into its bias, variance and covariance 
components: 

MSFE௠
ሺ௛ሻ ൌ ൬̂ߤ

௒೟శ೓
ሺ೓ሻ െ ߤ̂

௒෠೟శ೓,೘
ሺ೓ሻ ൰

ଶ

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
୆୧ୟୱ

൅ ൬ߪො
௒೟శ೓
ሺ೓ሻ െ ොߪ

௒෠೟శ೓,೘
ሺ೓ሻ ൰

ଶ

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
୚ୟ୰୧ୟ୬ୡୣ

൅

2 ൬1െ ොߩ
௒೟శ೓
ሺ೓ሻ ,௒෠೟శ೓,೘

ሺ೓ሻ ൰ ොߪ
௒೟శ೓
ሺ೓ሻ ො௒෠೟శ೓,೘ߪ

ሺ೓ሻ
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

େ୭୴ୟ୰୧ୟ୬ୡୣ

 (7) 

where ̂ߪ ,ߤොଶ and ߩො denote the sample mean, variance and correlation coefficients 
respectively (see Theil (1958, p. 34), Pindyck and Rubinfeld (1998, p. 210 ff.), 
Chauvet and Potter (2013)). The bias and variance components measure the 
systematic error of the forecasts and account for the extent to which the averages and 
variations of predictions differ from those of the realizations, whereas the covariance 
component measures the remaining unsystematic error arising from imperfect 
comovement between predictions and realizations (Theil (1958, p. 34 ff.), Pindyck 
and Rubinfeld (1998, p. 211)). 

3.4.2 Meso level: Disaggregate accuracy measure (subset RMSFE) 

By averaging across the full sample, aggregate measures as in (6) implicitly discard 
the fact that the forecasting performance of any two models may differ over time (e.g. 
Chauvet and Potter (2013), Siliverstovs (2017a; 2017b; 2020)). To obtain a more 
granular understanding about the forecasting performance in different time periods, 
we employ two distinct approaches proposed in the recent forecasting evaluation 
literature. First, Chauvet and Potter (2013) proposed to assess the average forecasting 
performance for recessionary and expansionary subsamples separately by computing: 

RMSFE௠,௥௘௖
ሺ௛ሻ ൌ ൤

ଵ

|࣭೑,ೝ೐೎
೚ |

∑௧∈࣭೑,ೝ೐೎
೚ ሺ ௧ܻା௛

ሺ௛ሻ െ ෠ܻ
௧ା௛,௠
ሺ௛ሻ ሻଶ൨

ଵ/ଶ

 (8a) 

and 

RMSFE௠,௘௫௣
ሺ௛ሻ ൌ ൤

ଵ

|࣭೑,೐ೣ೛
೚ |

∑௧∈࣭೑,೐ೣ೛
೚ ሺ ௧ܻା௛

ሺ௛ሻ െ ෠ܻ
௧ା௛,௠
ሺ௛ሻ ሻଶ൨

ଵ/ଶ

 (8b) 

where | ⋅ | denotes the number of elements in set ௙࣭,௦
௢  (cardinality) for subsample ݏ ∈

ሼexp, recሽ. The relative subset RMSFE for a suitable benchmark ܾ may then be 
defined analogously to equation (6) (see, e.g. Chauvet and Potter (2013)): 

rRMSFE௠,௕,௦
ሺ௛ሻ ൌ

ୖ୑ୗ୊୉೘,ೞ
ሺ೓ሻ

ୖ୑ୗ୊୉್,ೞ
ሺ೓ሻ 	 (9). 

In analogy to equation (6), rRMSFE௠,௕,௦
ሺ௛ሻ ൏ 1 indicates superior average performance 

of model ݉ compared to benchmark ܾ over the subsample period ݏ; and conversely 

for rRMSFE௠,௕,௦
ሺ௛ሻ ൐ 1 (see Subsection 3.4.1). Furthermore, we may be interested in 
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the rrRMSFE over subsample ݏ compared to the rRMSFE for the full sample, i.e. the 
ratio of equation (8) or (9) to equation (6):  

rrRMSFE௠,௕,௦
ሺ௛ሻ ൌ

୰ୖ୑ୗ୊୉೘,್,ೞ
ሺ೓ሻ

୰ୖ୑ୗ୊୉೘,್
ሺ೓ሻ 	 (10). 

For the recessionary sub-sample, rrRMSFE௠,௕,௥௘௖
ሺ௛ሻ ൏ 1 indicates that the relative 

improvement over the benchmark during recessionary periods is more pronounced 
than for the full sample and vice versa for the case where rrRMSFE௠,௕,௥௘௖

ሺ௛ሻ ൐ 1.  

3.4.3 Micro level: Disaggregate accuracy measure (scaled SFED) 

An alternative approach is employed in Siliverstovs (2017a; 2020), which is based on 
Welch and Goyal (2008) and enables an even more granular view of the forecasting 
performance by determining the contribution of each individual forecast to the overall 
RMSFE. Specifically, they consider measures based on the SFEDs:  

௧ା௛,௕,௠ߟ
ሺ௛ሻ ≡ SFED௧ା௛,௕,௠

ሺ௛ሻ ൌ ሺߝ௧ା௛,௕
ሺ௛ሻ ሻଶ െ ሺߝ௧ା௛,௠

ሺ௛ሻ ሻଶ (11), 

such that ߟ௧,௕,௠
ሺ௛ሻ ൐ 0 indicates superior performance of model ݉ in period ݐ compared 

to benchmark ܾ and vice versa for ߟ௧,௕,௠
ሺ௛ሻ ൏ 0 (Siliverstovs (2017a, p. 294 ff.)).6 The 

CSSFEDs from time ݐ଴ to ݐଵ reads:  

CSSFED௧బ,௧భ
ሺ௛ሻ ൌ ∑௧భ

௧ୀ௧బ
௧ା௛,௕,௠ߟ
ሺ௛ሻ , ,଴ݐ ଵݐ ∈ ௙࣭

௢, ଴ݐ ൑  ,ଵ (12)ݐ

such that CSSFED௧బୀௌାଵ,௧భୀ்ି௛ାଵ
ሺ௛ሻ ൐ 0 is equivalent to rRMSFE௕,௠

ሺ௛ሻ ൏ 1 and indicates 

superior overall performance of model ݉ compared with benchmark ܾ and vice versa 

for CSSFED௧బୀௌାଵ,௧భୀ்ି௛ାଵ
ሺ௛ሻ ൏ 0 (see Siliverstovs (2017a; 2020)). 

3.4.4 Testing superior predictive ability 

We test the models' superior forecasting performance by means of the widely used 
Diebold–Mariano (1995) tests, which posit under the null equal predictive accuracy 
between models ݉ and ܾ: 

H଴:	Eൣߝ௧ା௛,௕
ሺ௛ሻ ൧ ൌ Eൣߝ௧ା௛,௠

ሺ௛ሻ ൧            (13a) 

and test it against the common alternative 

H୅:	Eሾߝ௧ା௛,௕
ሺ௛ሻ ሿ ൐ Eሾߝ௧ା௛,௠

ሺ௛ሻ ሿ          (13b) 

for all ݐ ∈ ௙࣭
௢, and the used test statistic employs heteroscedasticity and 

autocorrelation consistent standard errors for ݄ ൐ 1 (see Hyndman et al. (2019), 
Zeileis et al. (2019) and references therein). Likewise, we apply the tests for the 
recessionary and expansionary subsets, ௙࣭,௘௫௣

௢  and ௙࣭,௥௘௖
௢  respectively. Moreover, 

 
6 For better comparability of SFED, when multiple dependent variables are used, we normalize the variation 

among the different series and use scaled SFED, given as ߟሷ௧,௕,௠
ሺ௛ሻ ൌ ௧,௕,௠ߟ

ሺ௛ሻ /ටߪఎଶ with ߪఎଶ ൌ Varሺߟ௧,௕,௠
ሺ௛ሻ ሻ.  
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where necessary, the tests account for the fact that models m and b are nested by using 
McCracken (2007)'s critical values for both recursive and rolling estimation schemes. 

Table 2  
Main results: Distribution of rRMSFE 

Horizon Sample Percentiles of rRMSFE rRMSFE rrRMSFE

  5% 25% 50% 75% 95% <1 <1

h = 1 Overall 0.852 0.958 1.000 1.022 1.107 49.5% −
 Expansion 0.925 0.985 1.009 1.044 1.165 38.9% 32.9%
 Recession 0.587 0.787 0.953 1.036 1.183 62.0% 67.1%

h = 2 Overall 0.848 0.951 1.006 1.046 1.161 45.8% −
 Expansion 0.943 1.001 1.038 1.113 1.284 25.0% 26.9%
 Recession 0.637 0.789 0.943 1.045 1.171 63.0% 73.1%

h = 4 Overall 0.840 0.934 1.006 1.047 1.186 47.7% −
 Expansion 0.898 1.002 1.065 1.173 1.396 24.5% 19.4%
 Recession 0.674 0.800 0.913 1.024 1.194 69.4% 80.6%

Notes. The table entries show the percentiles of distributions of the rRMSFE of the DFM5 model against the 
AR4 benchmark for all forecasting horizons as in Stock and Watson (2012b) (settings: OLS estimation, 
recursive scheme, NBER recession adjustment 'grow'; first vintage: the first quarter of 1985). The 'overall' 
forecast evaluation sample ranges from the fourth quarter of 1984 + h until the second quarter of 2018. The 
table splits the overall sample into expansion and recession subsamples, as described in Subsection 2.2. The 

two last columns indicate the fraction of variables for which rRMSFEୈ୊୑ହ,୅ୖସ
ሺ௛ሻ ൏ 1 and 

rrRMSFEୈ୊୑ହ,୅ୖସ,௦
ሺ௛ሻ ൏ ݏ ,1 ∈ ሼexp, recሽ. For more details, see Subsection 4.1. 

4. RESULTS 

Our main results in Subsection 4.1 examine the forecasting performance of the DFM5 
model against the AR4 benchmark under OLS estimation. The extension to these main 
results in Subsection 4.2 considers the same models with SURE estimations, and the 
robustness results in Subsection 4.3 test a variety of alternative specifications. 

4.1 Main results 

4.1.1 Macro level: Full sample performance 

Tables 2 and 3 summarize the main results of our forecasting exercise. To compare 
our results with those of Stock and Watson (2012b), Table 2 summarizes the 
distribution of rRMSFEs of all 216 variables similar to their table (ibid., see Table 2, 
p. 486) as well as the percentage of variables for which the rRMSFE and rrRMSFE 
are lower than unity (last two columns). 

Table 2 indicates that our results for the overall evaluation sample are well in line with 
those of Stock and Watson (2012b) despite slight differences in forecasting setup.7 

Stock and Watson (2012b) report that the DFM5 model is more accurate than the AR4 
benchmark for about half of all dependent variables. Our results for the full sample 
confirm these findings and show that the median rRMSFE is very close to unity at 
each horizon, and Table 3 indicates that for about 40% of all variables the 
improvement is statistically significant (at the level 5%). Likewise, in 5% of all cases 

 
7 Our setup differs from Stock and Watson (2012b) (see also the online supplement), for example, in terms of 
the dataset used (Global Insights and Conference Board's Indicators Database vs. FRED-QD), forecasting 
window (from the first quarter of 1985 to the fourth quarter of 2008 vs. the first quarter of 1985 to the second 
quarter of 2018), the number of predicted time series (143 vs. 216), the number of time series used for factor 
extraction (109 vs. 102). 
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the DFM5 yields an improvement over the AR4 of about 15% in terms of RMSFE, 
which is again comparable to Stock and Watson (2012b). 

Table 3  
Main results: Distribution of p-values 

Horizon Sample DM-tests 
P-values <1% P-values <5% P-values <10%

h = 1 Overall 25.50% 44.00% 52.30%
Expansion 12.50% 28.70% 39.40%
Recession 24.10% 38.00% 44.40%

h = 2 Overall 20.40% 40.30% 48.10%
Expansion 8.80% 20.80% 25.00%
Recession 21.80% 43.50% 50.90%

h = 4 Overall 20.40% 42.60% 50.50%
Expansion 9.30% 20.40% 25.00%
Recession 17.60% 48.10% 57.90%

Notes. The table shows the results of (one-sided) predictive ability tests when comparing the DFM5 model 
against the AR4 benchmark for all forecasting horizons (settings: OLS estimation, recursive scheme, NBER 
recession adjustment 'grow', first vintage: the first quarter of 1985). Specifically, the table entries provide the 
percentage of all variables for which the one-sided hypothesis of the Diebold and Mariano (1995) test are 
statistically significant at the 1%, 5% and 10% level respectively. To account for the nested model 
comparison, we use McCracken (2007)'s critical values and for h>1 heteroscedasticity and autocorrelation 
consistent standard errors are used (see Subsection 3.4.4). The table splits the overall sample into expansion 
and recession subsamples (see Subsection 2.2). For more details, see Section 4. 

4.1.2 Meso level: Sub-sample performance 

Univariate distributions: Separate subsamples over all variables 
However, a more interesting picture emerges as we deviate from Stock and Watson 
(2012b) and examine the absolute and relative predictive performance for the subsets 
of expansionary and recessionary periods separately (see Subsections 3.4.2 and 3.4.3). 
In accord with previous research, we find pronounced performance asymmetries in 
both absolute and relative terms (e.g. Chauvet and Potter (2013), Siliverstovs (2017a, 
2017b, 2020)). First, Figure 2 displays the distribution of absolute RMSFE for the 
DFM5 and AR4 for the full and both subsamples, which indicates that the absolute 
size of forecasting errors tends to be much larger in economic downturns than 
upswings (see Chauvet and Potter (2013)). 

Second, in terms of the relative size of RMSFE, the results for the boom and bust 
subsamples show both systematic and substantial distributional shifts of rRMSFEs, 
i.e. in virtually all percentiles depicted in Table 2, the rRMSFE is lower for recessions
than for expansions (see Chauvet and Potter (2013), Siliverstovs (2017b)).8 For
instance, for one-quarter ahead predictions the DFM5 for the top 5% of series
improves the benchmark by at least 41.3% during recessions but only by 7.5% during
expansions. Similar asymmetries in forecasting performance are observed at h = 2 and
h = 4 (see Figure B.4). Moreover, the second last column in Table 2 displays the
percentage of variables for which the DFM5 model improves upon the AR4
benchmark (inverse percentiles). While this share ranges between 25% and 39%
during expansions, it ranges between 62% and 69% during recessions – a
distributional shift with about twice as many variables that are more accurately
predicted in turbulent times than in calm times.

8 Figure B.4 in the Appendix visualizes the main results in Table 2 in terms of density plots of rRMSFE 
(overall, expansion vs. recession). 
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Figure 2 
Distribution of absolute RMSFEs for AR4 and DFM5 

Distribution absolute RMSFE 

Notes. The figures show the distributions of absolute RMSFEs as density plots and boxplots for the DFM (red) and AR4 (blue) at 
each forecasting horizon (settings: Recursive estimation scheme, NBER adjustment 'grow', estimation ofDFM5 and AR4 via OLS, 
first vintage: the first quarter of 1985). The absolute RMSFEs were delivered from normalized residuals of the DFM5 and AR4 
were both divided by the standard deviation of the corresponding dependent variable. All three figures are measured on the same 
scale. For more details, see Section 4.1. 

Third, the last column in Table 3 provides the fraction of variables for which the 
relative improvement of the DFM5 over the benchmark during recessionary periods 
is more pronounced than for the full sample (see the last row at each horizon). The 
results indicate that this is the case for 67.1%, 73.1% and 80.6% of all variables at 
݄ ൌ 1, ݄ ൌ 2 and ݄ ൌ 4 respectively (rrRMSFEୈ୊୑ହ,୅ୖସ,୰ୣୡ

ሺ௛ሻ ൏ 1). Conversely, these 
fractions indicate the shares of variables for which the relative accuracy of the DFM5 
is overstated during expansionary periods. Thus, at any given horizon, the overall 
rRMSFE systematically understates performance during recessions and overstates it 
during expansions for at least two-thirds of all variables (see, e.g. Siliverstovs (2020)). 

Fourth, the results from the DM-tests in Table 3 further support these findings with 
statistical evidence. Specifically, the fractions of variables for which the DM test 
rejects the null hypothesis of equal predictive accuracy is typically substantially 
higher during recessions than expansions at all forecasting horizons. Hence, the 
DFM5 and AR4 tend to perform equally well during expansions but statistically 
significantly differently during recessions (see, e.g. Chauvet and Potter (2013), 
Fossati (2018), Siliverstovs (2017b) for related findings). In light of the higher 
variation during recessions, we perceive these results to be a fairly strong indication 
of systematic differences in predictive performance between the two subsamples. 

Bivariate distributions: Joint subsamples over groups 
Figure 3 displays the bivariate distributions of rRMSFE for expansions (x-axis) and 
recessions (y-axis) as scatterplots for all horizons. Each scatterplot is divided into four 
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quadrants (rRMSFEDFM5,AR4,exp ≶1; rRMSFEDFM5,AR4,rec ≶1).9 The data points in 
Figure 3 scatter as follows across the three horizons: the vast majority (about 75%) of 
the data points lie below the 45°-line, which corresponds to the previously discussed 
distributional downward shift for the recessionary sub-samples. In each of these cases, 
recessions help to reduce the overall RMSFE and serve as "breadwinners" to 
economic forecasters. The DFM5 model is superior [inferior] to the AR4 benchmark 
for about 20% [30%] of indicators in both subsamples (proportion of points in 
Quadrant III [I]). For approximately 45% of all series, the DFM5 is benchmark 
superior to the AR4 only in recessionary but not in expansionary periods (Quadrant 
IV), and for the remaining small proportion of indicators the DFM5 is inferior during 
recessions but superior during expansions (Quadrant II). 

Figure 3 
Scatterplots of rRMSFE in expansions vs. recessions 

rRMSFE (expansion vs. recession) 

Notes. The figures show the distributions of absolute RMSFEs as density plots and boxplots for the DFM (red) and AR4 (blue) 
at each forecasting horizon (settings: recursive estimation scheme, NBER adjustment 'grow', estimation of DFM5 and AR4 via OLS, 
first vintage: the first quarter of 1985). The absolute RMSFEs were derived from normalized residuals, i.e. residuals of the 
DFM5 and AR4 were both divided by the standard deviation of the corresponding dependent variable. All three figures are measured 
on the same scale. For more details, see Subsection 4.1. 

Figure 4 provides a group-based summary of Figure 3 and summarizes the absolute 
and relative occurrences of variables in each quadrant by variable groups. The violet 
bars in Figure 4 correspond to the three distinct quadrant areas below the 45°-line. By 
classifying the 14 variable groups into four categories (good, good-moderate, 
moderate-poor, poor performance) based on the DFM5's ability to improve upon the 
AR4, the figure reveals systematic (cross-sectional) differences between the groups 
across forecasting horizons: dynamic factor models typically perform better, 

9 The top-right Quadrant I contains the time-series for which the DFM5 fails to improve upon the AR4 in 
both recessions and expansions. The top-left Quadrant II [bottom-right Quadrant IV] comprises the series for 

which the DFM5 produces more accurate forecasts during expansions [recessions] but not during recessions 

[expansions]. The bottom left Quadrant III contains variables for which the DFM5 improves over the AR4 

both during expansions and recessions. Furthermore, during recessions the points below the 45◦-line have 

lower rRMSFE than during expansions (rRMSFEDFM5,AR4,rec < rRMSFEDFM5,AR4,exp). 



R E C E S S I O N S  A S  B R E A D W I N N E R  F O R  F O R E C A S T E R S  S T A T E - D E P E N D E N T  E V A L U A T I O N    2 /2 0 2 0  
O F  P R E D I C T IV E  A B I L I T Y :  E V I D E N C E  F R O M  B I G  M A C R O E C O N O MI C  U S  D A T A 

19

especially during recessions, as well as during expansions when predicting indicators 
of the groups 'National Income and Product Accounts' (G1), 'Industrial Production' 
(G2), 'Employment and Unemployment' (G3), 'Inventories, Orders and Sales' (G5) as 
well as 'Non-household Balance Sheets' (G14). For most series, the DFM5 shows 
good to moderate performance for variables in groups 'Earnings and Productivity' 
(G7), 'Interest Rates' (G8), 'Money and Credit' (G9) as well as consumer sentiment 
indices in group 'Others' (G12). Moreover, we find dynamic factor models to perform 
moderately to poorly for variables from 'Housing' (G4), 'Prices' (G6), 'Households 
Balance Sheets' (G10) as well as 'Stock Prices' (G13) groups. For a large fraction of 
indicators in these groups, the DFM5 is often unable to beat AR4 in both recessions 
and expansions. Finally, the Exchange Rates (G11) dynamics projected by dynamic 
factor models tend to be worse than those predicted by the AR4 at any time – in 
recessions or expansions.  

Figure 4  
Barplot of groups in quadrants 

Variables in quadrants 

Notes. The figures provide a group-based summary of how the data points (dependent variables) in Figure 6 divide into the four 
quadrants. Quadrants I and III further distinguish whether the point lies above or below the 45°-line. All violet bars correspond to the 
areas below the 45°-line and the grey bars – to the areas above the 45°-line. The numbers provided in the bars give the absolute count, 
and the height of the bar indicates the group-specific fraction of dependent variables in the corresponding quadrant. The height of the 
leftmost bars for Quadrants III and IV [III and II] together indicate the fraction of variables for which rRMSFEୈ୊୑ହ,୅ୖସ,୰ୣୡ ൏ 1 
[rRMSFEୈ୊୑ହ,୅ୖସ,ୣ୶୮ ൏ 1] holds. Likewise, the height of the leftmost violet [grey] bars together indicate the fraction of variables 
for which rrRMSFEୈ୊୑ହ,୅ୖସ,୰ୣୡ ൏ 1 [rrRMSFEୈ୊୑ହ,୅ୖସ,ୣ୶୮ ൏ 1] holds. For more details, see Subsection 4.1.  

4.1.3 Micro level: Time period specific performance 

Individual time periods over all variables 
To shift from macro and meso to the micro level, we open the time dimension to the 
full extent and assess the forecasting performance of variables at each individual time 
period t based on their squared forecast error differences (see Subsection 3.4.3 and, 
e.g. Siliverstovs (2017a; 2020)). Figure 5 illustrates the histograms of the (unit-
variance scaled) SFED of all variables for each individual time period and reveals
clearly distinct patterns across the phases of the business cycle. Recall from
Subsection 3.4.3 that a positive [negative] SFED indicates superior [inferior]
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performance of the DFM5 compared to the AR4. Two features stand out: first, during 
expansionary periods, the median values of the SFED histograms typically directly 
hit the zero-value line, whereas the medians are usually positive during recessionary 
periods. Second, the interquartile range is substantially more concentrated during 
expansions than during recessions. The figures show surprisingly strong 
concentrations around the zero line at all horizons, especially after prolonged growth 
periods, such as the 1990s or 2010s. 

Figure 5  
Time period specific histograms of scaled SFED 

Scaled SFED observations 

Notes. The figures show for each time period ݐ the histogram of (unit-variance scaled) SFED, ߟሷ௧,୅ୖସ,ୈ୊୑ହ
ሺ௛ሻ , of all series under the 

main specifications (settings: recursive estimation scheme, NBER adjustment 'grow', estimation of DFM5 and AR4 via OLS, first 
vintage: the first quarter of 1985). A median value of the histogram above zero indicates that for more than half of all variables the 
DFM5 model produces a smaller error than the AR4; and vice versa for values below zero (see Subsection 3.4.3). The grey crosses 
beyond the histogram's whiskers indicate outliers and the grey shaded rectangles indicate the recessionary periods as defined in 
Subsection 2.2. For more details, see Subsection 4.1. 

This generalizes findings of previous research (e.g. Siliverstovs (2017a; 2020)) and 
illustrates, on a more granular level, that model performance differs systematically 
across the business cycle for a large number of target variables. 

Individual time periods over individual variables and groups 
The most granular assessment opens not only the time-dimension but also the cross-
sectional dimension. Figure B.1 (Appendix B) provides the most comprehensive 
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picture of our analyses and amounts to a three-dimensional illustration depicting the 
SFED values (z-axis) for each individual time period (x-axis) as well as each 
individual time-series (y-axis). Red [blue] coloured cells in the heat-plot indicate a 
positive [negative] SFED value, i.e. superiority [inferiority] of the DFM5 against the 
AR4 benchmark at the particular time period, whereas white cells indicate equal 
performance. The last CSSFED value of each series is provided in the rightmost 
column and corresponds to the sum of all SFED. 

Figure B.1 visualizes three key findings. First, consistent with the results above, it 
displays that relative model performance is state-dependent: in good times most cells 
are whitish, whereas in bad times the cells typically turn red and for some series blue, 
which indicates stronger differences in forecast accuracy during recessions than we 
usually observe during expansions (see, e.g. Siliverstovs (2017a; 2020)). Second, it 
reveals the two generic drivers of transient and persistent model performance 
differences: while the former are typically large but temporary, the latter are small but 
steady (see Figure B.2 and, e.g. Siliverstovs (2017a)). Among these, transient effects 
appear to be more dominant in Figure B.1.10 Third, concerning the cross-sectional 
dimension, the horizontal fine grey lines in Figure B.1 divide the vertically listed 
variables into the 14 groups and provide a more granular depiction of the group-
specific performance.11 The overall group patterns of red and blue series (CSSFED) 
also tend to be in line with Stock and Watson (2011)'s assessment that nominal series 
(such as inflation, exchange rates and prices) are more difficult to forecast than real 
series (such as industrial production, employment or real manufacturing). While some 
series naturally diverge from the previously described group trends, the within-group 
variation is rather limited, which substantiates our previous result of systematic 
differences in forecasting ability between different variable groups. 

4.1.4 10 key macroeconomic indicators 

Instead of looking at 216 series, we may narrow our focus on 10 key indicators. In 
this spirit, we selected 10 leading indicators that are similar or most closely related to 
those considered in recent studies with multiple dependent variables, such as Kim and 
Swanson (2014) and Guérin et al. (2018). In particular, Table 4 reports the rRMSFE 
together with the significance values for (1) GDP: Real Gross Domestic Product, (2) 
CON: Real Personal Consumption, (3) INV: Real Private Investment, (4) EXP: Real 
Exports, (5) IMP: Real Imports, (6) UNR: Unemployment Rate, (7) HRS: Business 

10 This argument is qualitatively reflected in the fact that rather few series show persistently superior (or 
inferior) performance over time, whereas almost all series show pronounced performance differences at a few 
points in time – typically during recessions. Quantitatively, the proportion of series for which the overall 
relative performance corresponds to the relative performance in recessions (i.e. for which 

signሺrRMSFE௠,௕
ሺ௛ሻ െ 1ሻ ൌ signሺrRMSFE௠,௕,௥௘௖

ሺ௛ሻ െ 1ሻ) amounts to 78.2%, 77.3% and 75.5% for ݄ ൌ 1, ݄ ൌ 2
and ݄ ൌ 4 respectively. 
11 For example, one may wonder why the DFM5 performs systematically worse than the AR4 for particular 
groups (such as G6 for 'Prices'). A visual analysis of CSSFED patterns shows that a great majority of G6 
variables can be attributed to one of the three groups summarized in Figures B.2 (transiency, persistency, 
combination): first, about 50% of all G6 series show clear transient drivers of performance differences (see 
G6 CPIAUCSL in Figure B.2d and also, e.g. G6 WPSFD49207, G6 WPSFD49207). For these series, the 
DFM5 and AR4 perform equally well most of the time except for a few observations in which the DFM5 
predicts the actual development (much) worse than the AR4. Second, about 10% of all G6 series show 
persistent inferiority of the DFM5 (see G6 DDURRG3Q086SBEA in Figure B.2e and also, e.g. G6 
DMOTRG3Q086SBEA, G6 CPILFESL) and about 20% show a combination of transient and persistent 
inferiority (see G6 GDPICTPI in Figure B.2f and also, e.g. G6 CPIMEDSL, G6 CUSR0000SAD). The 
remaining series are more difficult to qualify clearly. Transient effects therefore also dominate performance 
differences in group G6. 
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Hours of All Persons, (8) CPI: Consumer Price Index, (9) RMB: Adjusted Real 
Monetary Base, (10): PER: Price Earnings Ratio of S&P500. 

Table 4  
Main results: 10 key macroeconomic indicators 

Horizon Sample rRMSFE 
GDP CON INV EXP IMP UNR HRS CPI RMB PER

h = 1 Overall 1.018 1.003* 0.795*** 0.980** 0.835*** 0.837*** 0.899*** 1.109 1.015 0.913***
Expansion 1.166 1.087 0.935** 1.103 1.093 0.964** 1.030 1.000* 1.030 0.923***
Recession 0.768* 0.794** 0.488*** 0.803*** 0.505*** 0.507*** 0.560*** 1.338 0.873** 0.875**

h = 2 Overall 0.951** 0.992* 0.820*** 1.014 0.767*** 0.830*** 0.911** 1.212 1.015 0.893***
Expansion 1.227 1.157 1.055 1.200 0.983* 1.043 1.180 1.088 1.019 0.948**
Recession 0.707** 0.791** 0.591*** 0.818** 0.611** 0.576*** 0.668*** 1.327 0.937* 0.760**

h = 4 Overall 0.911** 0.954** 0.883** 1.035 0.837*** 0.816*** 0.891** 1.188 0.983** 0.977**
Expansion 1.230 1.129 1.121 1.186 0.967** 1.029 1.201 1.158 0.991* 1.121
Recession 0.756** 0.851** 0.747** 0.887** 0.765** 0.660** 0.747** 1.203 0.918* 0.732**

Notes. The table entries show the rRMSFE of the DFM5 model against the AR4 benchmark for all forecasting horizons for 10 key 
macroeconomic indicators (settings: OLS estimation, recursive scheme, NBER recession adjustment 'grow'; first vintage: the first 
quarter of 1985). The entries '*', '**', '***' denote significance of the DM-test (using McCracken (2007)'s critical values) at the 90%, 
95% and 99% level respectively. The variable acronyms refer to the following variables (FRED mnemonics are provided in 
parentheses): GDP: Real Gross Domestic Product (GDPC1), CON: Real Personal Consumption (PCECC96), INV: Real Private 
Investment (GPDIC1), EXP: Real Exports (EXPGSC1), IMP: Real Imports (IMPGSC1), UNR: Unemployment Rate (UNRATE), 
HRS: Business Sector Hours of All Persons (HOABS), CPI: Consumer Price Index (CPIAUCSL), RMB: Adjusted Real Monetary 
Base (AMBSLREALx), PER: S&P 500 Price-Earnings Ratio (S.P.PE.ratio). For more details, see the notes in Tables 2 and 3 as well 
as Section 4. 

Table 4 paints a clear image: for all 10 key indicators (except the CPI12), the DFM5 is 
significantly better than the AR4 in bust phases and typically indistinguishable from 
the AR4 during boom phases – which is again in accord with the state-dependent 
forecast evaluation literature (see, e.g. Chauvet and Potter (2013)). Furthermore, 
similar to Siliverstovs (2020) and Fossati (2018), we see that the average performance 
for the full evaluation sample is often strongly distorted towards the performance 
during recessions and can lead to misleading expectations of model performance in 
terms of size and significance. To see this, consider the 'HRS' variable, for instance: 
while the overall assessment in Table 4 qualifies the DFM5 model as significantly 
superior to the benchmark at all three horizons, it is, in fact, worse than the benchmark 
model most of the time because it is only (substantially and significantly) superior in 
the few recessionary periods but not in expansionary periods, which make up most of 
the time periods. 

4.2 Extended results 

As an extension to the main results above and further deviation from Stock and 
Watson (2012b), this subsection considers the effects of using Pesaran et al. (2011)'s 

12 The fact that US inflation (CPI) is generally difficult to predict is consistent with previous work (see, e.g. 

Koop and Potter (2004)). Concerning the significant differences during expansions at h = 1, observe that the 
90%, 95% and 99% percentiles of McCracken (2007)'s critical values for the settings of the main model are 
0.021, 0.308 and 0.979 respectively (see Table 1 in McCracken (2007, p. 729)). Hence, despite the fact that 
the rRMSFE for CPI during expansions is slightly higher than unity (rRSMFE = 1.0003607) and therefore 
has a negative DM-statistic (DM = −0.014; determined as weighted loss differential, see McCracken (2007)), 
the distributional skew arising from nested model comparisons still rejects the null hypothesis of equal 
predictive accuracy between DFM5 and AR4 at the 10% level. 
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SURE estimator to account for the MA(h − 1) process in multi-period ahead 
predictions. The analyses below extend Pesaran et al. (2011)'s full sample evaluation 
of the SURE estimator for multiple dependent variables with a state-dependent 
forecast evaluation (analogously to Subsection 4.1) and over a longer time horizon 
(1985–2018 instead of 1979–2002). 

Table 5  
Extended results: rRMSFEs and DM-tests (SURE estimation) 

Horizon Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% < 1 < 1 <5%

h = 1 Overall 0.852 0.958 1.000 1.022 1.107 49.50% − 44.00%
Expansion 0.925 0.985 1.009 1.044 1.165 38.90% 32.90% 28.70%

  Recession 0.587 0.787 0.953 1.036 1.183 62.00% 67.10% 38.00%

h = 2 Overall 0.844 0.932 0.999 1.036 1.133 50.90% − 45.80%
Expansion 0.929 1.002 1.036 1.107 1.257 24.50% 24.50% 19.90%

  Recession 0.596 0.775 0.913 1.034 1.162 65.70% 75.50% 49.10%

h = 4 Overall 0.809 0.888 0.963 1.023 1.171 64.40% − 60.60%
Expansion 0.832 0.969 1.019 1.092 1.258 38.90% 27.30% 31.50%

  Recession 0.684 0.805 0.887 1.017 1.193 69.40% 72.70% 58.30%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the AR4 benchmark as well as the corresponding DM-test results at the 5% level (settings: SURE estimation, recursive 
scheme, NBER recession adjustment 'grow'; first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see the notes 
in Tables 2 and 3 and Subsection 4.2. 

Tables 5 and 6 provide the SURE-based counterparts of the OLS-based results in 
Tables 2–4. To simplify their pairwise comparison, entries are bold [underlined] if the 
SURE-based percentiles [percentages] are at least as low [high] as the corresponding 
results for OLS in Tables 2–4. The results in Tables 5 and 6 reveal that our main 
findings of the previous section are robust to the kind of estimation methodology 
employed. The SURE-based results paint the very same kind of asymmetries between 
boom and bust periods in terms of both size and significance. In fact, the DFM5 tends 
to be even better able to improve upon the AR4 under SURE estimation. These 
improvements may stem from two sources: they can either be attributed to superior 
performance of the DFM5(SURE) compared with the DFM5(OLS) and/or the inferior 
performance of the AR4(SURE) compared to the AR4(OLS). Tables 7 and B.1 shed 
more light on these sources and show that both effects are relevant in the present case: 
for multi-period ahead forecasts, the DFM5(SURE) performs better than DFM5(OLS) 
for about a third of all variables in the full sample, whereas the AR4(SURE) performs 
worse than AR4(OLS) for the majority of variables (see rRMSFE<1 columns in 
Tables 7 and B.1). 

A close inspection of the DFM5 results highlights two additional aspects. First, Table 
7 further corroborates the importance of distinguishing the performance across 
business cycles: for a majority of variables SURE-based estimations for the DFM5 
typically yield more accurate predictions, i.e. in normal times. In turbulent times, 
however, OLS predictions tend to have smaller errors. Figure 6 provides a more 
granular description of this fact by decomposing the MSFEs of the top 10 variables 
into their bias, variance and covariance components based on Theil's inequality (see 
Subsection 3.4.1). More precisely, the figure illustrates the differences in MSFE 
components for the DFM(SURE) vs. DFM(OLS) and shows that SURE-based 
estimations of the DFM5 tend to yield slight improvements over OLS during 
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expansions but strong deteriorations during recessions, which bends the overall 
assessment towards the performance in busts. Hence, the conventional overall 
assessment would misleadingly qualify SURE as inferior when it is in fact better than 
OLS most of the time. Second, Figure 6 also shows that during expansions, SURE 
estimation is often able to reduce bias at the expense of an increase in variance and 
yields typically better co-movements with the actual realizations (see the discussion 
in Subsection 3.4.1). During recessions, instead, we usually see a deterioration of both 
bias and variance for the top 10 indicators. Moreover, the results for the AR4 
benchmark are provided in the Appendix and show, by and large, comparable patterns 
as for the DFM5 (see Table B.1 and Figure B.3).13 

Table 6  
Extended results: 10 key macroeconomic indicators (SURE estimation) 

Horizon Sample rRMSFE 

  GDP CON INV EXP IMP UNR HRS CPI RMB PER 

h = 1 
Overall 1.018 1.003* 0.795*** 0.980** 0.835*** 0.837*** 0.899*** 1.109 1.015 0.913*** 
Expansion 1.166 1.087 0.935** 1.103 1.093 0.964** 1.03 1.000* 1.03  0.923*** 

  Recession 0.768* 0.794** 0.488*** 0.803*** 0.505*** 0.507*** 0.560*** 1.338 0.873** 0.875** 

h = 2 
Overall 0.901** 0.944** 0.799*** 0.999* 0.733*** 0.816*** 0.870** 1.218 1.019 0.959** 
Expansion 1.208 1.122 1.058 1.177 0.931** 1.062 1.175 1.104 1.022 1.037 

  Recession 0.676*** 0.774*** 0.583*** 0.816** 0.597*** 0.579*** 0.650*** 1.314 0.951 0.771** 

h = 4 
Overall 0.848*** 0.898*** 0.850*** 0.992* 0.815*** 0.772*** 0.834*** 1.218 0.973*** 0.992* 
Expansion 1.065 0.980* 0.997* 1.106 0.870*** 0.897*** 1.025 1.264 0.980** 1.119 

  Recession 0.776*** 0.864** 0.780*** 0.874** 0.787** 0.693** 0.766*** 1.195 0.928* 0.766*** 

Notes. Analogously to Table 4, the table entries show the rRMSFE of the DFM5 model against the AR4 benchmark for all forecasting 
horizons for 10 key macroeconomic indicators (settings: SURE estimation, recursive scheme, NBER recession adjustment 'grow'; 
first vintage: the first quarter of 1985). A table entry is bold if the rRMSFE under SURE estimation is equal or smaller than the 
rRMSFE under OLS estimation from Table 4. For more details, see the notes in Tables 2 and 3 as well as Section 4. 

Table 7  
Distribution of rRMSFE for DFM5(SURE) vs. DFM5(OLS) 

Horizon Sample Distribution of rRMSFE of DFM5 rRMSFE rrRMSFE

  5% 25% 50% 75% 95% <1 <1

h = 1 Overall 1.000 1.000 1.000 1.000 1.000 0.00% −
Expansion 1.000 1.000 1.000 1.000 1.000 0.00% 0.00%

  Recession 1.000 1.000 1.000 1.000 1.000 0.00% 0.00%

h = 2 Overall 0.959 0.992 1.008 1.023 1.047 34.70% −
Expansion 0.946 0.978 0.998 1.014 1.043 52.30% 71.30%

  Recession 0.951 0.995 1.029 1.056 1.097 28.20% 28.70%

h = 4 Overall 0.921 0.988 1.017 1.056 1.110 36.60% −
Expansion 0.867 0.935 0.982 1.037 1.119 58.80% 62.50%

  Recession 0.826 0.981 1.053 1.110 1.202 31.90% 37.50%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
(SURE estimation) against the DFM5 model (OLS estimation) (settings: recursive scheme, NBER recession adjustment 'grow', first 
vintage: the first quarter of 1985). For more details, see the notes in Table 2 and and Subsection 4.2. 

 
13 Table B.1 and Figure B.3 also show systematic differences across the business cycles, where the 
AR4(SURE) tends to perform worse than AR4(OLS) in recessions than in expansions. These differences are 
particularly pronounced at h = 2, but less – at h = 4. 
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In a nutshell, our main results are not critically affected when we account for the MA 
(h − 1) process in the errors by means of Pesaran et al. (2011)'s SURE estimator. In 
particular, we find SURE estimations to be more accurate than OLS in normal times 
but less accurate in turbulent times. 

4.3 Robustness test results 

To test the robustness of our main results, this section considers an alternative model 
and environmental specifications of our forecasting experiment. Each robustness test 
below considers one particular deviation from the main model specifications in 
Subsection 4.1. To simplify pairwise comparisons, an entry is again bold [underlined] 
if the percentile [percentage] entries are equal to or lower [higher] than the 
corresponding entry for the main results in Tables 2 and 3 respectively. 

4.3.1 Recession definitions 

As explained in Subsection 2.2, we adapted the definition of recessions based on the 
'growing' recession adjustment for our main results. This subsection considers two 
alternatives: the proposed 'shifting' adjustments where both the start and end-date are 
shifted (h − 1) periods apart (see Table C.1) as well as the effect of using the original 
NBER definitions without adjustments (see Table C.2) despite the drawbacks 
discussed in Subsection 2.2. Also, recall from these discussions that both alternatives 
do only change the results for multi-period (h > 1) but not for single-period (h = 1) 
ahead predictions. 

The results in Tables C.1 and C.2 indicate that the reported main findings are robust 
to the kind of recessionary definition employed. If anything, we notice a slightly 
enhanced ability of the DFM5 to outperform the AR4 benchmark in both recessionary 
and expansionary periods for both alternatives. Yet, this does not materially affect the 
distinct performance asymmetries across business cycles. 

Figure 6  
Differences in MSFE components for DFM5(SURE) vs. DFM5(OLS) 
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Notes. The figures show the differences of MSFE components of the DFM5(SURE) vs. DFM5(OLS) for the top 10 macroeconomic 
indicators of Subsection 4.1.4 in all (sub-)samples (settings: recursive scheme, NBER recession adjustment 'grow', first vintage: the 
first quarter of 1985). The MSFEs were decomposed into bias, variance and covariance as outlined in Subsection 3.4.1, and the bars 
indicate the components' differences (SURE minus OLS). Thus, the bars above [below] the x-axis indicate that SURE has a larger 
[smaller] error component than OLS. All three component bars of any particular variable are green [orange] if SURE is better [worse] 
than OLS in terms of MSFE (sum of all components). Moreover, MSFEs were derived from normalized realizations and predictions 
to have similar scales (using standard deviation of the target variable). For better comparability, the y-axis of all three plots at a 
particular horizon has the same scale. For more details, see Subsection 4.2. 

4.3.2 Rolling estimation scheme 

The literature typically considers both recursive and rolling estimation windows (see, 
e.g. Stock and Watson (2012b), Kim and Swanson (2014)), and Table C.3 provides 
the results under rolling estimation scheme. The asymmetries between business cycles 
still persist, but are slightly less pronounced compared to recursively expanding 
windows in terms of size and significance. 

4.3.3 Alternative benchmarks 

In addition to the AR4 benchmark, we consider a number of robust alternative 
specifications, which are frequently employed in the relevant literature (see 
Subsection 3.2.2). Tables C.4 and C.5 show the estimation results when using the 
HMN and AR1 benchmarks, and the results indicate even more pronounced 
differences across the business cycles for these benchmarks. This observation appears 
to be sensible, because the HMN and AR1 models are (far) more limited in terms of 
flexibility than our main AR4 benchmark and may therefore not react to strong 
movements of the underlying series as well (see Siliverstovs (2020); see James et al. 
(2013) for a general discussion of model flexibility and performance). However, even 
if the AR4 benchmark is fairly flexible, a natural drawback of AR models is their 
inability to respond contemporaneously, i.e. they can only react after good or bad news 
have materialized. This is why we additionally assess the DFM5 against the CADL 
benchmark, which incorporates, in addition to its AR processes, the contemporaneous 
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information of all predictors.14 The results in Table C.6 confirm that the CADL is 
more competitive against the DFM5. Yet, as can also be seen, the performance 
differences across business cycles still persist in terms of size and significance at all 
horizons and therefore leave our main findings unaffected. 

4.3.4 Alternative factor models 

Tables C.7 and C.8 provide the results for two alternative dynamic factor models with 
one factor (DFM1) and 10 factors (DFM10) respectively. They show that our main 
results in Subsection 4.1 are robust to the kind of factor model employed and reveal a 
similar state-dependent performance. Interestingly, we also see that the DFM1 model 
tends to perform superior compared to the DFM5 in normal times for almost all 
variables, whereas the DFM10 shows a mixed performance. This is broadly consistent 
with our expectations in that the DFM1 is most closely associated with the AR4, 
which tends to perform reasonably in expansions (see Section 4), whereas the flexible 
DFM10 may be more prone to overfitting (see James et al. (2013) and also discussions 
in Kim and Swanson (2016)). 

4.3.5 Extension of forecasting window 

A major drawback of assessing the forecasting performance for expansions and 
recessions separately is a general lack of a sufficiently large number of recessionary 
periods. To address this aspect, we enlarged our forecasting window by shifting its 
starting period from the first quarter of 1985 to the first quarter of 1980. This allows 
us to capture two additional recessions in the early 1980s without having to reduce 
the estimation window too much. Table C.9 provides further evidence in support of 
our main findings. Specifically, the extension of the forecasting window often results 
in superior ability of the DFM5 against the AR4 benchmark and have more power to 
reject the hypothesis of equal predictive accuracy. Hence, the extension of the 
forecasting window tells the same story.  

5. CONCLUSIONS

This study systematically re-examines notable recent contributions on the forecasting 
performance of dynamic factor models for hundreds of macroeconomic target 
variables (mainly Stock and Watson (2012b), also Korobilis (2017), Pesaran et al. 
(2011)) and devotes particular attention to possible performance asymmetries across 
business cycles in the spirit of Chauvet and Potter (2013) and Siliverstovs (2017a; 
2017b; 2020). Our (quasi) real-time forecasting experiment is based on a novel and 
rich dataset for the US economy (FRED-QD) spanning 216 quarterly indicators for 
almost 60 years (1960–2018) (see McCracken (2019) and McCracken and Ng 
(2019b)). 

Our results are consistent with the recent business cycle-related evaluation literature 
(e.g. Chauvet and Potter (2013) and Siliverstovs (2017a; 2017b; 2020)) and 
systematically broaden their relevance to a large number of macroeconomic indicators 
in general and 10 key indicators in particular. First, in accord with Chauvet and Potter 
(2013), we document systematic model performance asymmetries in both absolute 

14 Notice that the DFM5 and CADL are no longer nested in a strict sense. We therefore applied the standard 
rather than McCracken (2007)'s critical t-values for the DM test, which results in overall fewer significant 
improvements but still maintains our key finding of pronounced differences between business cycle 
subsamples. 
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and relative terms across business cycle phases. On the one hand, for a majority of 
series, absolute forecasting errors tend to be larger in recessions than in expansions 
for both dynamic factor models and AR benchmarks (see Chauvet and Potter (2013)). 
On the other hand, there are clear distributional shifts in relative performance, and 
dynamic factor models typically perform strongly and statistically significantly better 
than the benchmark during recessions but only insignificantly differently during 
expansions (see, e.g. Chauvet and Potter (2013), Siliverstovs (2017b)). We have 
shown that both performance metrics and tests for the overall sample can be decisively 
distorted towards the performance of recessionary subsamples and may qualify 
models as overall significantly superior to the benchmark even if they are inferior 
most of the time (see, e.g. Fossati (2018), Siliverstovs (2020)). Second, concerning 
the cross-sectional dimension, we document clear differences in models' predictive 
ability for different groups of indicators (low within-group heterogeneity). While the 
DFM performs superior to the AR4 for most of the 14 groups, it tends to perform 
worse for the series related to exchange rates, stocks, prices and inflation (see also 
Stock and Watson (2011)). Finally, we find Pesaran et al. (2011)'s GLS-based SURE 
estimator to yield even more pronounced results in relative terms. In absolute terms, 
GLS-based model predictions are found to be more accurate than OLS in normal times 
but less accurate in turbulent times. Moreover, we show that asymmetries persist 
under a broad range of alternative robustness specifications, which include different 
recession definitions, estimation schemes, benchmarks, factor models as well as 
evaluation window sizes. 

In a nutshell, our results indicate that the widespread practice of relying on full sample 
forecast evaluation metrics and tests may not be ideal: for at least two thirds of all 216 
macroeconomic indicators at any forecast horizon, rRMSFE measures systematically 
over-estimate DFM model performance in expansions and systematically under-
estimate it in contractions (see also Siliverstovs (2017a; 2020)). This is both good and 
bad news. The good news is that overall evaluations have so far masked the genuine 
predictive power of factor models: for a majority of variables, they perform best 
precisely in the periods when public and private sector executives care most about 
accurate assessments of current and future macroeconomic conditions (see, e.g. 
Siliverstovs (2017a; 2020), Stock and Watson (2017)). However, in light of the 
importance of forecasts for policy making (Wieland and Wolters (2013)), the bad 
news is that overall evaluation measures tend to be critically distorted and may thus 
give rise to suboptimal or even wrong decisions (see, e.g. Siliverstovs (2017a; 2020)). 
Our results thus clearly encourage forecasters to explicitly evaluate full and 
subsample performances. 

We wish to close with Stock and Watson (2017)'s recent assessment of the forecasting 
literature: "[D]espite advances in data availability, theory, and computational power, 
we have not seen dramatic improvements in forecast accuracy over the past decades." 
(ibid., p. 70). In light of our results, we may only partly agree with this assessment. 
We disagree on a disaggregated level as we find dramatic improvements in forecast 
accuracy during recessionary periods for a broad number of macroeconomic 
indicators. However, we agree on an aggregate level as average forecasting 
performance measures over the full evaluation period dilute these dramatic 
improvements and thereby mask substantial improvements in forecast accuracy (see 
Siliverstovs (2017a; 2020)). 
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This paper can be advanced along several promising avenues: on the empirical side, 
we mainly focused on a number of variations of dynamic factor models as well as 
multiple benchmark specifications, but future research may explore an even richer set 
of models well-suited to cope with big macroeconomic datasets (see, e.g. Kim and 
Swanson (2014) for interesting recent work along these lines). Furthermore, the state-
dependent evaluation literature has so far predominantly focused on developed 
countries. Less is known about possible asymmetries in developing countries many of 
which experienced even more pronounced economic downturns and backlashes over 
the past decades than developed countries (Chauvet and Potter (2013)). On the 
conceptual side, alternative metrics and testing procedures are needed that account 
more directly for business cycle-related asymmetries (see, e.g. Fossati (2018) for 
notable recent advances in this regard). This may hopefully also shed light on the 
sources of transiency or persistency in forecasting power. Moreover, the forecast 
combination literature may be able to put these performance asymmetries to good use 
(see, e.g. Del Negro et al. (2016) and Kim and Swanson (2016); see Elliott and 
Timmermann (2016, p. 310 ff.) for a review). Both conceptual and empirical 
contributions along these lines are likely to enjoy high practical significance over the 
coming years. 
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APPENDIX A. Data 

Table A.1  
Stationarity transformations 

TC Transformations for Xl,t 

1 Wl,t = Zl,t 
2 Wl,t = Zl,t − Zl,t−1 
3 Wl,t = (Zl,t − Zl,t−1) − (Zl,t−1 − ZW,t−2) 
4 Wl,t = ln(Zl,t) 
5 Wl,t = ln(Zl,t) − ln(Zl,t−1) 
6 Wl,t = [ln(Zl,t − ln(Zl,t−1)] − [ln(Zl,t−1 − ln(Zl,t−2)] 
7 Wl,t = (Zl,t/Zl,t−1 − 1) − (Zl,t−1)/Zl,t−2 − 1) 

TC Transformations for 

1 Yt(h) = Zk,t 
2 Yt(h) = Zk,t − Zk,t−h 
3 Yt(h) = h−1(Zk,t − Zk,t−h) − (Zk,t−h − Zk,t−h−1) 
4 Yt(h) = ln(Zk,t) 
5 Yt(h) = ln(Zk,t) − ln(Zk,t−h) 
6 Yt(h) = h−1[ln(Zk,t − ln(Zk,t−h)] − [ln(Zk,t−h − ln(Zk,t−h−1)] 
7 Yt(h) = h−1(Zk,t/Zk,t−h − 1) − (Zk,t−h)/Zk,t−h−1 − 1) 

Notes. This table summarizes the stationarity transformations applied to the dependent variables ( ௧ܻ
ሺ௛ሻ) and

independent variables ( ௟ܹ,௧, ݈ ∈ ሼ1,…  ሽ\ሼ݇ሽ) as in Stock and Watson (2012b) (see the online appendix) andܭ,
Korobilis (2017). TC stands for the corresponding transformation code provided in McCracken and Ng 
(2019b). The three variables with mnemonics TLBSNNBBDIx, NWPIx and HWIx have very large entries as 
they were not stationarity transformed (TC = 1). These variables were therefore rescaled by the factors 
100'000, 1'000 and 1'000 respectively. 
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APPENDIX B. Main results 

Figure B.1 
Heatplots of SFED 
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Time (quarters)
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B.1a: h = 1
Scaled (CS)SFED observations

Horizon = 1, scheme = recursive, recession = NBER (adjustment: grow)
Model = DFM5, benchmark = AR4, method = OLS, first vintage = Q1 1985
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B.1b: h = 2
Scaled (CS)SFED observations

Horizon = 2, scheme = recursive, recession = NBER (adjustment: grow) 
Model = DFM5, benchmark = AR4, method = OLS, first vintage = Q1 1985

1985 1990 1995 2000 2005 2010 2015

Time (quarters)

−10 −5 0 5 10

Values   Recessions

CSSFED
Overall

−20 0 20 40

G14_TTAABSNNCBx
G14_TNWMVBSNNCBx

G14_TNWMVBSNNCBBDIx
G14_TNWBSNNBx

G14_TNWBSNNBBDIx
G14_TLBSNNCBx

G14_TLBSNNCBBDIx
G14_TLBSNNBx

G14_TLBSNNBBDIx
G14_TABSNNBx

G14_CNCFx
G13_S.P.PE.ratio
G13_S.P.div.yield

G13_S.P.500
G13_S.P..indust
G13_NIKKEI225
G12_UMCSENTx
G11_EXUSUKx
G11_EXSZUSx
G11_EXJPUSx
G11_EXCAUSx

G10_TNWBSHNOx
G10_TLBSHNOx

G10_TFAABSHNOx
G10_TARESAx

G10_TABSHNOx
G10_NWPIx
G10_LIABPIx

G10_HNOREMQ027Sx
G10_CONSPIx
G9_TOTRESNS
G9_TOTALSLx
G9_REALLNx

G9_NONREVSLx
G9_NONBORRES
G9_MZMREALx
G9_M2REALx
G9_M1REALx
G9_INVEST

G9_DTCTHFNM
G9_DTCOLNVHFNM

G9_CONSUMERx
G9_BUSLOANSx

G9_AMBSLREALx
G8_TB6MS

G8_TB6M3Mx
G8_TB3SMFFM

G8_TB3MS
G8_T5YFFM

G8_GS5
G8_GS1TB3Mx
G8_GS10TB3Mx

G8_GS10
G8_GS1

G8_FEDFUNDS
G8_CPF3MTB3Mx

G8_CP3M
G8_COMPAPFF
G8_BAA10YM

G8_BAA
G8_AAAFFM

G8_AAA
G7_UNLPNBS
G7_ULCNFB
G7_ULCBS

G7_RCPHBS
G7_OPHPBS
G7_OPHNFB

G7_COMPRNFB
G7_CES3000000008x
G7_CES2000000008x
G7_CES0600000008

G6_WPU0561
G6_WPSID62
G6_WPSID61

G6_WPSFD49502
G6_WPSFD49207
G6_WPSFD4111

G6_PPIIDC
G6_PPICMM
G6_PPIACO

G6_PCEPILFE
G6_PCECTPI

G6_OILPRICEx
G6_IPDBS

G6_GPDICTPI
G6_GDPCTPI

G6_DTRSRG3Q086SBEA
G6_DSERRG3Q086SBEA
G6_DREQRG3Q086SBEA
G6_DRCARG3Q086SBEA
G6_DOTSRG3Q086SBEA
G6_DONGRG3Q086SBEA
G6_DODGRG3Q086SBEA
G6_DNDGRG3Q086SBEA
G6_DMOTRG3Q086SBEA
G6_DIFSRG3Q086SBEA
G6_DHUTRG3Q086SBEA
G6_DHLCRG3Q086SBEA
G6_DHCERG3Q086SBEA
G6_DGOERG3Q086SBEA
G6_DGDSRG3Q086SBEA
G6_DFXARG3Q086SBEA
G6_DFSARG3Q086SBEA
G6_DFDHRG3Q086SBEA
G6_DDURRG3Q086SBEA
G6_DCLORG3Q086SBEA

G6_CUSR0000SAS
G6_CUSR0000SAD
G6_CUSR0000SAC

G6_CUSR0000SA0L5
G6_CUSR0000SA0L2

G6_CPIULFSL
G6_CPITRNSL
G6_CPIMEDSL
G6_CPILFESL
G6_CPIAUCSL
G6_CPIAPPSL
G5_RSAFSx
G5_ISRATIOx

G5_CMRMTSPLx
G5_BUSINVx

G5_AMDMUOx
G5_AMDMNOx
G4_PERMITW
G4_PERMITS

G4_PERMITNE
G4_PERMITMW

G4_PERMIT
G4_HOUSTW
G4_HOUSTS

G4_HOUSTNE
G4_HOUSTMW
G4_HOUST5F

G4_HOUST
G3_USWTRADE
G3_USTRADE

G3_USTPU
G3_USSERV
G3_USPRIV
G3_USPBS
G3_USMINE
G3_USLAH
G3_USINFO
G3_USGOVT
G3_USGOOD
G3_USFIRE
G3_USEHS

G3_USCONS
G3_UNRATESTx
G3_UNRATELTx

G3_UNRATE
G3_UEMPMEAN

G3_UEMPLT5
G3_UEMP5TO14
G3_UEMP27OV
G3_UEMP15T26

G3_SRVPRD
G3_PAYEMS

G3_NDMANEMP
G3_MANEMP

G3_LNS14000026
G3_LNS14000025
G3_LNS14000012
G3_LNS12032194

G3_HWIx
G3_HWIURATIOx

G3_HOANBS
G3_HOABS

G3_DMANEMP
G3_CLAIMSx
G3_CIVPART

G3_CES9093000001
G3_CES9092000001
G3_CES9091000001
G3_CES0600000007

G3_CE16OV
G3_AWOTMAN
G3_AWHMAN
G2_IPNMAT

G2_IPNCONGD
G2_IPMAT

G2_IPMANSICS
G2_IPFUELS
G2_IPFINAL
G2_IPDMAT

G2_IPDCONGD
G2_IPCONGD
G2_IPBUSEQ

G2_IPB51222S
G2_IPB51220SQ
G2_IPB51110SQ

G2_INDPRO
G2_CUMFNS

G1_Y033RC1Q027SBEAx
G1_SLCEx
G1_PRFIx
G1_PNFIx
G1_PCNDx
G1_PCESVx
G1_PCDGx

G1_OUTNFB
G1_OUTBS

G1_IMPGSC1
G1_GPDIC1
G1_GCEC1

G1_FPIx
G1_FGRECPTx
G1_EXPGSC1

G1_DPIC96
G1_B021RE1Q156NBEA
G1_B020RE1Q156NBEA
G1_A823RL1Q225SBEA
G1_A014RE1Q156NBEA

G1_PCECC96
G1_GDPC1
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Notes. The figures provide a three-dimensional illustration for the SFED values (z-axis, colour of cells) for 
each individual time period (x-axis) as well as each individual time-series (y-axis) in the case of the main 
model specifications (settings: recursive estimation scheme, NBER adjustment 'grow', estimation of DFM5 
and AR4 via OLS, first vintage: the first quarter of 1985). The rightmost column illustrates the terminal value 
of CSSFED of a particular series (see Subsection 3.4.3 for more details). The different variable groups are 
distinguished by fine grey horizontal lines and the grey shaded areas correspond to recessionary periods as 
defined in Subsection 2.2. For more details, see Subsection 4.1. 

B.1c: h = 4
Scaled (CS)SFED observations

Horizon = 4, scheme = recursive, recession = NBER (adjustment: grow)
Model = DFM5, benchmark = AR4, method = OLS, first vintage = Q1 1985
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Time (quarters)
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G10_TNWBSHNOx
G10_TLBSHNOx

G10_TFAABSHNOx
G10_TARESAx

G10_TABSHNOx
G10_NWPIx

G10_LIABPIx
G10_HNOREMQ027Sx

G10_CONSPIx
G9_TOTRESNS

G9_TOTALSLx
G9_REALLNx

G9_NONREVSLx
G9_NONBORRES

G9_MZMREALx
G9_M2REALx
G9_M1REALx

G9_INVEST
G9_DTCTHFNM

G9_DTCOLNVHFNM
G9_CONSUMERx
G9_BUSLOANSx

G9_AMBSLREALx
G8_TB6MS

G8_TB6M3Mx
G8_TB3SMFFM

G8_TB3MS
G8_T5YFFM

G8_GS5
G8_GS1TB3Mx

G8_GS10TB3Mx
G8_GS10

G8_GS1
G8_FEDFUNDS

G8_CPF3MTB3Mx
G8_CP3M

G8_COMPAPFF
G8_BAA10YM

G8_BAA
G8_AAAFFM

G8_AAA
G7_UNLPNBS

G7_ULCNFB
G7_ULCBS

G7_RCPHBS
G7_OPHPBS
G7_OPHNFB

G7_COMPRNFB
G7_CES3000000008x
G7_CES2000000008x
G7_CES0600000008

G6_WPU0561
G6_WPSID62
G6_WPSID61

G6_WPSFD49502
G6_WPSFD49207

G6_WPSFD4111
G6_PPIIDC

G6_PPICMM
G6_PPIACO

G6_PCEPILFE
G6_PCECTPI

G6_OILPRICEx
G6_IPDBS

G6_GPDICTPI
G6_GDPCTPI

G6_DTRSRG3Q086SBEA
G6_DSERRG3Q086SBEA
G6_DREQRG3Q086SBEA
G6_DRCARG3Q086SBEA
G6_DOTSRG3Q086SBEA
G6_DONGRG3Q086SBEA
G6_DODGRG3Q086SBEA
G6_DNDGRG3Q086SBEA
G6_DMOTRG3Q086SBEA

G6_DIFSRG3Q086SBEA
G6_DHUTRG3Q086SBEA
G6_DHLCRG3Q086SBEA
G6_DHCERG3Q086SBEA
G6_DGOERG3Q086SBEA
G6_DGDSRG3Q086SBEA
G6_DFXARG3Q086SBEA
G6_DFSARG3Q086SBEA
G6_DFDHRG3Q086SBEA
G6_DDURRG3Q086SBEA
G6_DCLORG3Q086SBEA

G6_CUSR0000SAS
G6_CUSR0000SAD
G6_CUSR0000SAC

G6_CUSR0000SA0L5
G6_CUSR0000SA0L2

G6_CPIULFSL
G6_CPITRNSL
G6_CPIMEDSL
G6_CPILFESL
G6_CPIAUCSL
G6_CPIAPPSL

G5_RSAFSx
G5_ISRATIOx

G5_CMRMTSPLx
G5_BUSINVx

G5_AMDMUOx
G5_AMDMNOx
G4_PERMITW
G4_PERMITS

G4_PERMITNE
G4_PERMITMW

G4_PERMIT
G4_HOUSTW
G4_HOUSTS

G4_HOUSTNE
G4_HOUSTMW

G4_HOUST5F
G4_HOUST

G3_USWTRADE
G3_USTRADE

G3_USTPU
G3_USSERV
G3_USPRIV
G3_USPBS

G3_USMINE
G3_USLAH

G3_USINFO
G3_USGOVT
G3_USGOOD

G3_USFIRE
G3_USEHS

G3_USCONS
G3_UNRATESTx
G3_UNRATELTx

G3_UNRATE
G3_UEMPMEAN

G3_UEMPLT5
G3_UEMP5TO14
G3_UEMP27OV

G3_UEMP15T26
G3_SRVPRD
G3_PAYEMS

G3_NDMANEMP
G3_MANEMP

G3_LNS14000026
G3_LNS14000025
G3_LNS14000012
G3_LNS12032194

G3_HWIx
G3_HWIURATIOx

G3_HOANBS
G3_HOABS

G3_DMANEMP
G3_CLAIMSx
G3_CIVPART

G3_CES9093000001
G3_CES9092000001
G3_CES9091000001
G3_CES0600000007

G3_CE16OV
G3_AWOTMAN

G3_AWHMAN
G2_IPNMAT

G2_IPNCONGD
G2_IPMAT

G2_IPMANSICS
G2_IPFUELS
G2_IPFINAL
G2_IPDMAT

G2_IPDCONGD
G2_IPCONGD
G2_IPBUSEQ

G2_IPB51222S
G2_IPB51220SQ
G2_IPB51110SQ

G2_INDPRO
G2_CUMFNS

G1_Y033RC1Q027SBEAx
G1_SLCEx
G1_PRFIx
G1_PNFIx

G1_PCNDx
G1_PCESVx
G1_PCDGx

G1_OUTNFB
G1_OUTBS

G1_IMPGSC1
G1_GPDIC1
G1_GCEC1

G1_FPIx
G1_FGRECPTx
G1_EXPGSC1

G1_DPIC96
G1_B021RE1Q156NBEA
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G1_A823RL1Q225SBEA
G1_A014RE1Q156NBEA
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Figure B.2  
CSSFED: Transient and persistent model performance differences 

Notes. The figures display the CSSFED patterns for six specific variables over the entire forecasting window, ∀	ݐଵ ∈ ௙࣭,
௢ in equation 

(13) (settings: recursive scheme, NBER recession adjustment 'grow', first vintage: the first quarter of 1985). The left and centre figures 
depict the four stylized patterns described in Siliverstovs (2017a; 2020) and allows assessing whether the DFM5 performs transiently
or persistently superior [inferiorto the AR4 benchmark (see the upper-left and upper-centre figures) [(see the lower-left and lower-
centre figures)]. Transient performance improvements [deteriorations] are characterized by a few large upward [downward]
movements in CSSFED, whereas persistent performance improvements [deteriorations] show a continuous upward [downward] trend 
(see, e.g. Siliverstovs (2017a; 2020); notice: Siliverstovs refers to transient improvements as "jumps" and persistent improvements as
"trends"). The figures on the right show a combination of both temporary and persistent superiority of the DFM [inferiority] (see the
upper-right figure) [(see the lower-right figure)]. For more details, see Subsection 4.1.
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.Table B.1  
Extended results: Distribution of rRMSFE for AR4(SURE) vs. AR4(OLS) 

Horizon Sample Distribution of rRMSFE of AR4 rRMSFE rrRMSFE

  5% 25% 50% 75% 95% <1 <1

h = 1 Overall 1.000 1.000 1.000 1.000 1.000 0.00% −
Expansion 1.000 1.000 1.000 1.000 1.000 0.00% 0.00%

  Recession 1.000 1.000 1.000 1.000 1.000 0.00% 0.00%

h = 2 Overall 0.961 1.000 1.022 1.040 1.071 24.10% −
Expansion 0.939 0.976 1.000 1.026 1.059 49.50% 77.80%

  Recession 0.947 1.017 1.048 1.075 1.105 17.60% 22.20%

h = 4 Overall 0.957 1.023 1.065 1.096 1.142 16.70% −
Expansion 0.950 1.011 1.048 1.085 1.138 20.80% 53.20%

  Recession 0.890 1.000 1.070 1.114 1.165 25.00% 46.80%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the AR4 model (SURE 
estimation) against the AR4 model (OLS estimation) (settings: recursive scheme, NBER recession adjustment 'grow', first vintage: 
the first quarter of 1985). For more details, see notes in Tables 2 and 3 and Subsection 4.2. 
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Figure B.3  
Differences in MSFE components for AR4(SURE) vs. AR4(OLS) 

 
Notes. The figures show the differences of MSFE components of the AR4(SURE) vs. AR4(OLS) for the top 10 macroeconomic 
indicators of Subsection 4.1.4 in all (sub-)samples (settings: recursive scheme, NBER recession adjustment 'grow'; first vintage: the 
first quarter of 1985). For more details, see notes under Figure 6 and Subsection 4.2. 
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Figure B.4  
RRMSFE densities (overall, expansions vs. recessions) 

 
Notes. The figure displays (smoothened) density plots of the rRMSFE of the main model specification for the overall evaluation 
period (left) and for the expansionary and recessionary subsamples (right) respectively (see Subsection 2.2). It corresponds therefore 
to a visualization of the results contained in Table 2. For more details, see Subsection 4.1. 
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APPENDIX C. Robustness test results 

Table C.1  
Robustness tests: Results for shifting recession adjustments 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.852 0.958 1.000 1.022 1.107 49.50% − 44.00%
Expansion 0.925 0.985 1.009 1.044 1.165 38.90% 32.90% 28.70%

  Recession 0.587 0.787 0.953 1.036 1.183 62.00% 67.10% 35.20%

h = 2 Overall 0.848 0.951 1.006 1.046 1.161 45.80% − 40.30%
Expansion 0.938 0.996 1.036 1.102 1.262 25.90% 27.30% 20.40%

  Recession 0.609 0.786 0.939 1.050 1.196 64.40% 72.70% 39.40%

h = 4 Overall 0.840 0.934 1.006 1.047 1.186 47.70% − 42.60%
Expansion 0.906 0.994 1.048 1.127 1.268 28.20% 26.40% 20.80%

  Recession 0.618 0.781 0.900 1.033 1.300 67.10% 73.60% 44.90%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the AR4 benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, recursive scheme, 
NBER recession adjustment 'shift', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles [percentages] 
are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in Tables 2 and 
3 and Subsection 4.3. 

Table C.2  
Robustness tests: Results without recession adjustments 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.852 0.958 1.000 1.022 1.107 49.50% − 44.00%
Expansion 0.925 0.985 1.009 1.044 1.165 38.90% 32.90% 28.70%

  Recession 0.587 0.787 0.953 1.036 1.183 62.00% 67.10% 35.20%

h = 2 Overall 0.848 0.951 1.006 1.046 1.161 45.80% − 40.30%
Expansion 0.937 0.995 1.042 1.118 1.293 26.90% 22.20% 20.40%

  Recession 0.599 0.744 0.930 1.027 1.155 68.10% 77.80% 44.40%

h = 4 Overall 0.840 0.934 1.006 1.047 1.186 47.70% − 42.60%
Expansion 0.876 0.981 1.045 1.118 1.284 31.00% 20.40% 23.60%

  Recession 0.698 0.786 0.891 0.975 1.145 79.20% 79.60% 58.80%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the AR4 benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, recursive scheme, 
NBER recession adjustment 'none', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in 
Tables 2 and 3 and Subsection 4.3. 
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Table C.3  
Robustness tests: Results for rolling scheme 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.868 0.957 1.007 1.037 1.092 46.80% − 47.70%
Expansion 0.912 0.973 1.006 1.038 1.126 44.90% 40.30% 45.80%

  Recession 0.705 0.871 0.982 1.053 1.181 56.00% 59.70% 28.20%

h = 2 Overall 0.874 0.980 1.029 1.064 1.128 33.30% − 35.60%
Expansion 0.914 0.992 1.033 1.075 1.182 28.20% 42.10% 29.20%

  Recession 0.759 0.892 0.997 1.105 1.216 50.90% 57.90% 24.50%

h = 4 Overall 0.873 0.966 1.019 1.065 1.140 39.80% − 44.00%
Expansion 0.883 0.978 1.033 1.109 1.248 33.80% 38.90% 33.80%

  Recession 0.744 0.901 0.986 1.067 1.224 52.80% 61.10% 28.20%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the AR4 benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, rolling scheme, 
NBER recession adjustment 'grow', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in 
Tables 2 and 3 and Subsection 4.3. 

Table C.4  
Robustness tests: Results for HMN benchmark 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.392 0.734 0.907 0.984 1.054 79.60% − 80.10%
Expansion 0.446 0.815 0.943 1.009 1.104 73.10% 36.60% 72.70%

  Recession 0.296 0.515 0.851 1.004 1.303 74.10% 63.40% 56.90%

h = 2 Overall 0.486 0.735 0.888 1.021 1.101 69.90% − 70.40%
Expansion 0.517 0.800 0.965 1.056 1.223 61.60% 34.30% 61.60%

  Recession 0.399 0.584 0.826 1.015 1.291 73.60% 65.70% 58.30%

h = 4 Overall 0.578 0.767 0.894 1.022 1.123 71.80% − 71.80%
Expansion 0.565 0.841 0.995 1.103 1.274 51.90% 28.70% 51.90%

  Recession 0.525 0.680 0.836 1.002 1.192 74.50% 71.30% 60.60%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the HMN benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, recursive scheme, 
NBER recession adjustment 'grow', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in 
Tables 2 and 3 and Subsection 4.3. 
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Table C.5  
Robustness tests: Results for AR1 benchmark 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.846 0.938 0.987 1.026 1.105 61.60% − 61.10%
Expansion 0.900 0.965 1.002 1.048 1.180 47.20% 32.90% 43.50%

  Recession 0.581 0.769 0.935 1.042 1.223 63.00% 67.10% 43.50%

h = 2 Overall 0.825 0.920 0.991 1.045 1.169 54.60% − 54.20%
Expansion 0.872 0.981 1.041 1.118 1.290 31.50% 24.50% 28.70%

  Recession 0.614 0.763 0.916 1.041 1.210 68.10% 75.50% 49.50%

h = 4 Overall 0.803 0.916 0.985 1.053 1.167 54.20% − 54.20%
Expansion 0.844 0.986 1.072 1.183 1.395 30.60% 15.30% 27.80%

  Recession 0.649 0.786 0.875 1.013 1.192 72.20% 84.70% 55.10%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the AR1 benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, recursive scheme, 
NBER recession adjustment 'grow', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in 
Table 2 and Table 3 and Subsection 4.3. 

Table C.6  
Robustness tests: Results for CADL benchmark 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.887 0.970 1.005 1.027 1.104 43.50% − 10.20%
Expansion 0.936 0.992 1.014 1.049 1.167 33.30% 33.30% 4.20%

  Recession 0.630 0.824 0.971 1.044 1.174 58.80% 66.70% 22.20%

h = 2 Overall 0.878 0.970 1.013 1.051 1.149 41.20% − 3.20%
Expansion 0.964 1.009 1.044 1.120 1.282 21.30% 26.90% 1.90%

  Recession 0.671 0.814 0.970 1.045 1.164 60.20% 73.10% 20.40%

h = 4 Overall 0.864 0.952 1.017 1.057 1.173 43.50% − 5.10%
Expansion 0.932 1.011 1.067 1.193 1.391 21.80% 19.40% 2.30%

  Recession 0.708 0.834 0.932 1.035 1.181 65.70% 80.60% 16.70%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the CADL benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, recursive 
scheme, NBER recession adjustment 'grow', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. Apart from Table 3, this table 
uses the conventional critical t-values, because the DFM5 and CADL are not nested in a strict sense. For more details, see notes in 
Tables 2 and 3 and Subsection 4.3. 
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Table C.7 
Robustness tests: Results for DFM1 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.921 0.983 1.003 1.020 1.078 42.60% − 24.50%
Expansion 0.961 0.990 1.003 1.021 1.151 40.70% 41.70% 23.60%

  Recession 0.686 0.865 0.976 1.043 1.251 56.90% 58.30% 36.10%

h = 2 Overall 0.921 0.982 1.010 1.028 1.091 35.60% − 24.50%
Expansion 0.951 0.994 1.009 1.041 1.215 30.10% 38.00% 16.20%

  Recession 0.717 0.875 0.990 1.058 1.190 54.60% 62.00% 35.60%

h = 4 Overall 0.903 0.983 1.009 1.041 1.119 37.00% − 19.00%
Expansion 0.935 0.999 1.019 1.082 1.219 26.40% 30.10% 16.20%

  Recession 0.730 0.907 0.994 1.044 1.188 53.70% 69.90% 38.40%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM1 model 
against the AR4 benchmark as well as the corresponding DMtest results at the 5% level (settings: OLS estimation, recursive scheme, 
NBER recession adjustment 'grow', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in 
Tables 2 and 3 and Subsection 4.3. 

Table C.8  
Robustness tests: Results for DFM10 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.860 0.953 1.005 1.040 1.151 45.80% − 51.40%
Expansion 0.923 0.981 1.021 1.070 1.212 36.10% 32.40% 38.00%

  Recession 0.558 0.779 0.958 1.066 1.234 58.30% 67.60% 42.60%

h = 2 Overall 0.839 0.952 1.017 1.064 1.170 42.60% − 45.40%
Expansion 0.933 0.998 1.054 1.131 1.294 25.50% 28.70% 26.90%

  Recession 0.598 0.775 0.937 1.068 1.285 59.30% 71.30% 47.20%

h = 4 Overall 0.848 0.946 1.018 1.073 1.222 43.10% − 46.80%
Expansion 0.928 1.016 1.087 1.202 1.418 18.50% 19.90% 20.40%

  Recession 0.661 0.807 0.902 1.050 1.233 62.50% 80.10% 50.50%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM10 model 
against the AR4 benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, recursive scheme, 
NBER recession adjustment 'grow', first vintage: the first quarter of 1985). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in 
Tables 2 and 3 and Subsection 4.3. 
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Table C.9  
Robustness tests: Results for forecasting window extension 

Horizon   Sample Percentiles of rRMSFE rRMSFE rrRMSFE DM-test

  5% 25% 50% 75% 95% <1 <1 <5%

h = 1 Overall 0.848 0.927 0.986 1.019 1.051 58.30% − 57.40%
Expansion 0.910 0.975 1.005 1.029 1.093 46.30% 27.30% 40.70%

  Recession 0.711 0.812 0.944 1.013 1.106 70.80% 72.70% 45.80%

h = 2 Overall 0.834 0.913 0.990 1.035 1.094 52.80% − 51.90%
Expansion 0.901 0.983 1.033 1.076 1.168 32.40% 26.90% 31.00%

  Recession 0.699 0.802 0.934 1.031 1.130 64.40% 73.10% 47.70%

h = 4 Overall 0.829 0.908 0.992 1.046 1.109 53.20% − 52.30%
Expansion 0.866 0.997 1.055 1.121 1.308 26.40% 19.90% 24.10%

  Recession 0.709 0.806 0.927 1.013 1.103 70.80% 80.10% 50.90%

Notes. Analogously to Tables 2 and 3, the table entries show the percentiles of distributions of the rRMSFE of the DFM5 model 
against the AR4 benchmark as well as the corresponding DM test results at the 5% level (settings: OLS estimation, recursive scheme, 
NBER recession adjustment 'grow', first vintage: the first quarter of 1980). An entry is bold [underlined] if the percentiles 
[percentages] are equal or smaller [larger] than the corresponding entry in Tables 2 and 3 respectively. For more details, see notes in 
Tables 2 and 3 and Subsection 4.3. 
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