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ABSTRACT 

In this paper we reassess the forecasting performance of the Bayesian mixed-
frequency model suggested in Carriero et al. (2015) in terms of point and density 
forecasts of the GDP growth rate using US macroeconomic data. Following Chauvet 
and Potter (2013), we evaluate the forecasting accuracy of the model relative to a 
univariate AR(2) model separately for expansions and recessions, as defined by the 
NBER business cycle chronology, rather than relying on a comparison of forecast 
accuracy over the whole forecast sample spanning from the first quarter of 1985 to 
the third quarter of 2011. We find that most of the evidence favouring the more 
sophisticated model over the simple benchmark model is due to relatively few 
observations during recessions, especially those during the Great Recession. In 
contrast, during expansions the gains in forecasting accuracy over the benchmark 
model are at best very modest. This implies that the relative forecasting performance 
of the models varies with business cycle phases. Ignoring this fact results in a distorted 
picture: the relative performance of the more sophisticated model in comparison with 
the naive benchmark model tends to be overstated during expansions and understated 
during recessions. 

Keywords: nowcasting, mixed-frequency data, real-time data, business cycle 
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1. INTRODUCTION 

In a recent contribution to the Handbook of Forecasting Chauvet and Potter (2013) 
provided a comprehensive review of the forecasting performance of several state-of-
the-art econometric models using real-time data vintages. These models include the 
univariate linear autoregressive model of order two, AR(2), univariate non-linear 
models that take into account Cumulative Depth of Recession (CDR) and Markov-
switching dynamics, the Dynamic Stochastic General Equilibrium (DSGE) model, 
Bayesian and non-Bayesian Vector Auto Regressive (BVAR and VAR) models as 
well as the Dynamic Factor model with Markov Switching (AR-DFMS). In addition 
to forecasts from these econometric models, survey-based Blue Chip forecasts were 
also included in the analysis. 

Focusing on the quarterly US GDP growth rate, Chauvet and Potter (2013) conducted 
an assessment of the forecasting accuracy of these models not only for the full sample 
(from the first quarter of 1992 to the fourth quarter of 2010) but also for sub-samples 
of expansions and recessions, as defined by the NBER business cycle chronology. 
Their main finding is that forecasting performance of the state-of-the-art models 
varies with the business cycle phases. Typically, the absolute size of forecast errors is 
larger during recessions than expansions. More intriguingly, during expansions all 
sophisticated models in question as well as professional forecasters produced average 
forecast accuracy that at best is comparable to that from the benchmark AR(2) model.1 

Despite the clearly stated outcome, the suggestion of Chauvet and Potter (2013) to 
report absolute and relative forecasting performance of models separately for 
recessions and expansions has so far not received much attention in the 
macroeconomic forecasting literature. Recent studies persist in reporting results of 
forecasting competitions for the whole forecast evaluation period (e.g. see 
Schorfheide and Song (2015), Kim and Swanson (2018)) or, at best, for the sub-
periods that either end or even start just before the Great Recession (e.g. see Carriero 
et al. (2015), Foroni et al. (2015), Giannone et al. (2016)). In doing so, these studies 
are likely to conceal differences in forecasting performance across recessions and 
expansions of competing models, potentially leading to the erroneous conclusions 
regarding the ranking of these models based on their relative predictive ability. 

In this paper we investigate whether the conclusions reached in Chauvet and Potter 
(2013) for forecasting models involving variables sampled at a single (quarterly) 
frequency can be generalised to models dealing with economic variables sampled at 
heterogeneous frequencies. Since the seminal work of Ghysels et al. (2004) and 
Ghysels et al. (2007), mixed-frequency models have gained enourmous popularity 
among the forecasting community, with many different modifications proposed to the 
original model specifications (Siliverstovs (2017), Carriero et al. (2015), Foroni et al. 
(2015), Schorfheide and Song (2015), Guérin and Marcellino (2013), Marcellino and 
Schumacher (2010), inter alia); see Foroni and Marcellino (2013) for an overview. 
However, to the best of our knowledge the question of the comparative predictive 
ability of mixed-frequency models during economic booms and busts has not yet been 
addressed in a systematic way. In our study we intend to close this gap in the literature 
by providing detailed empirical evidence on this topic. 

                                                                 
1 Similar to Chauvet and Potter (2013), the AR(2) model was chosen as the benchmark model in studies by 
Carriero et al. (2015), Edge et al. (2010), Siliverstovs (2017) and many others. 
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For this purpose, we utilise the Bayesian mixed-frequency model with stochastic 
volatility proposed in Carriero et al. (2015) for forecasting US GDP growth using the 
12 most closely monitored monthly economic/financial indicators. Our choice of this 
study for emphasising the importance of verifying asymmetries in the predictive 
ability of competing models across the business cycle phases is not purely incidental. 
First, the econometric model of Carriero et al. (2015) combines several recent 
advances in time series econometrics that makes it suitable for routine forecasting in 
institutions such as central banks, for example. These include handling of mixed-
frequency data sets of moderate size, straightforward and fast parameter estimation 
using Bayesian methods, out-of-sample model evaluation both in terms of point and 
density forecast accuracy and, last but not least, incorporation of stochastic volatility 
of the error term. The last feature has been shown to be instrumental in improving 
density forecasts of US macroeconomic time series compared to models with 
homoscedastic innovations (Clark (2011)). 

Second, the data set of Carriero et al. (2015) comprises historical real-time data 
vintages for each month from January 1985 until October 2011, thus avoiding the 
caveats of using pseudo-real time data sets for model estimation and evaluation 
(Croushore and Stark (2003; 2001)). More importantly, in line with common practice 
Carriero et al. (2015) evaluate the forecasting performance of their model over the 
whole forecast sample from the first quarter of 1985 until the third quarter of 2011 as 
well as for the sub-sample from the first quarter of 1985 until the first quarter of 2008 
that ends before the Great Recession. Using the latter sub-sample, the authors exclude 
one out of three NBER-identified recession periods, while in the former sample all 
three recessions are present. All in all, the results reported in Carriero et al. (2015) 
serve as a well-documented, credible benchmark against which we can compare our 
results. 

Our main findings can be summarised as follows. First, similarly to Chauvet and 
Potter (2013) we document asymmetric forecasting ability during expansions and 
recessions. But in our case this asymmetry gradually vanishes as the forecasting 
horizon shortens and more information regarding the reference quarter accrues from 
monthly indicators. Remarkably, this conclusion holds not only for point but also for 
density forecasts. 

Second, even though differences in forecasting accuracy during expansions/recessions 
eventually disappear for models based on the most complete information sets, the 
differences in forecasting performance relative to the benchmark model remain. 
Consistent with the results of Chauvet and Potter (2013), we also find that during 
expansions the benchmark univariate autoregressive model produces forecasting 
accuracy that is comparable to that of more sophisticated multivariate models. It is 
only for relatively few observations during recessions that these models are able to 
bring about substantial gains in forecast accuracy relative to the benchmark model. 

This recorded asymmetry in the relative forecasting performance across the business 
cycle phases has strong implications for the message delivered by those studies that 
ignore it. In doing so, these studies tend to severely overstate the predictive ability of 
their preferred models over that of naive benchmark models during expansions and, 
consequently, to understate it during recessions. Hence, the biased assessment of 
model forecasting accuracy is delivered to business analysts, policy-makers or any 
other parties interested in their forecasts. 
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The rest of the paper is organised as follows. The next section contains a description 
of the data set. Section 3 describes the econometric model used in the paper. In Section 
4 we present evaluation metrics used for assessment of forecasting performance of the 
forecasting models. The results are presented in Section 5. The results reported in the 
main text are complemented in the extensive Appendix, where we verify the 
robustness of our conclusions by assessing forecasting performance of alternative 
benchmark models, SIMs and their combinations. The final section summarises our 
findings and outlines possible extensions of our work. 

2. DATA 

The data used in this paper are the real-time data vintages collected by Carriero et al. 
(2015). These vintages comprise quarterly GDP data as well as 12 monthly indicators 
that are closely monitored for assessing economic outlook in the US. The data set is 
organised to reflect historical availability of both quarterly GDP data and monthly 
indicators for every month from January 1985 until October 2011. These monthly data 
vintages are utilised in order to produce US GDP growth forecasts for each quarter 
from the first quarter of 1985 until the third quarter of 2011. 

The US GDP data for quarter t − 1 are published in three subsequent releases (initial, 
second, and final) at the end of each month of the following quarter t. In line with 
Carriero et al. (2015), we evaluate the forecasting accuracy of the econometric models 
using the second release of the GDP data (see Figure 1). The shaded areas correspond 
to the three recession periods according to the NBER business cycle chronology: from 
the third quarter of 1990 until the first quarter of 1991 (three quarters), from the first 
quarter of 2001 until the fourth quarter of 2001 (four quarters), and from the fourth 
quarter of 2007 until the second quarter of 2009 (seven quarters). Thus, in the 107-
quarter long forecast evaluation sample there are 14 and 93 quarters identified as 
recession and expansion periods, respectively. 

Figure 1  
Quarterly US GDP growth; second release 

 
The monthly data include business tendency surveys (ISM, SUPDEL, ORDERS), 
labour market conditions (EMPLOY, CLAIMS), production (IP, HOURS) as well as 
consumption (RSALES) measures of the economy, housing (HS) and financial 
(SP500, TBILL, TBOND) markets. These indicators are characterised by their timing 
of release, i.e. whether their values for the previous month are released during the first 
or second week in the current month (see Table 1). The differences in the release 
timing of the monthly indicators have important implications for the specification of 
forecasting models at forecasting origins. The time series of monthly indicators from 
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the data vintage (October 2011) along with the recession periods are displayed in 
Figure 2. 

Table 1  
Monthly indicators 

Name Description (transformation) Timing of 
release1 

ISM ISM index (overall) for manufacturing (level) 1st week 
EMPLOY Payroll employment (log-change) 1st week 
SUPDEL ISM index for supplier delivery times (level) 1st week 
ORDERS ISM index for orders (level) 1st week 
HOURS Average weekly hours of production workers (log-change) 1st week 
SP500 S&P 500 index (log-change) 1st week 
TBILL 3-month Treasury bill rate (level) 1st week 
TBOND 10-year Treasury bond yield (level) 1st week 
CLAIMS New claims for unemployment insurance (level) 2nd week 
RSALES Real retail sales (log-change) 2nd week 
IP Industrial production (log-change) 2nd week 
STARTS Housing starts (log-level) 2nd week 
1 Release of the observation for the previous month either in the first or second week of the current month. 

Figure 2  
Data: monthly indicators, vintage from October 2011; forecast sample 
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3. ECONOMETRIC MODEL OF CARRIERO ET AL. (2015) 

General information about the forecasting framework is presented in Figure 3. The 
forecasts of US GDP growth are produced for each quarter in the period from the first 
quarter of 1985 to the third quarter of 2011 at four consecutive forecast origins (FO1, 
FO2, FO3, FO4) as follows: FO1, FO2, and FO3 denote the end of the first week of 
the first, second and third month in quarter t, respectively, and FO4 denotes the end 
of the first week of the first month in quarter t + 1. In line with the rest of the literature, 
forecasts made at forecast origins FO1–FO3 are referred to as nowcasts, i.e. those 
made for now or the current quarter, and forecasts made at FO4 are labelled as 
backcasts, i.e. those that are backwards-looking or that are made (shortly) after the 
end of the targeted quarter. 

Figure 3 
Data release timing and model specifications 

 
The forecasts are made recursively month by month, using an expanding information 
set. In Figure 3 we use gray-shaded colour in order to indicate data availability at each 
forecast origin.2 For example, at FO1 in a given quarter t the values up to the third 
month of the previous quarter t − 1 are available for the variables released during the 
first week of the month: ISM, SUPDEL, ORDERS, EMPLOY, HOURS, SP500, 
TBILL, and TBOND. For the remaining four variables (CLAIMS, RSALES, IP, HS) 
released during the second week of the month, only the values up to the second month 
of that quarter t − 1 are available to the forecaster. At the next forecast origin FO2, the 
data are extended by one month. This means that for the first and second groups of 
variables (according to the publication week) observations for the first month of 
quarter t and for the third month of quarter t − 1 have been released, respectively. For 
each of the remaining forecast origins data availability consequently increases by one 
month for all monthly variables. 

                                                                 
2 We distinguish between plain and crisscrossed cells both coloured in gray. The description of the 
crisscrossed cells is provided in Sub-section 3.3 below. 
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Similarly to the monthly variables, at each forecast origin the availability of GDP data 
is shown in Figure 3. At FO1 in quarter t, GDP data are available up to quarter t − 2. 
At the next forecast origin FO2, the first publication of the official GDP estimate for 
quarter t − 1 takes place, followed by the second and third releases for the same quarter 
t − 1 at FO3 and FO4, respectively. 

The initial estimation sample is from the first quarter of 1970 to the third quarter of 
1984 for FO1 and from the first quarter of 1970 to the fourth quarter of 1984 for  
FO2–FO4, reflecting the publication lag of GDP vintages. Using the available data, a 
forecast is made for the first quarter of 1985 at each of the four forecast origins. Then 
the estimation sample is increased by one quarter, the first quarter of 1985, and 
forecasts for the second quarter of 1985 are made. We proceed in this fashion until 
forecasts for the last quarter, the third quarter of 2011, in our forecast evaluation 
sample are made. 

3.1 General setup 

In this section we describe the econometric model of Carriero et al. (2015). Since we 
intend to replicate the results of their paper, all model specifications and tuning 
parameter values are kept the same as in the original paper. The econometric model 
has the following specification:  

𝑦𝑦𝑡𝑡 = 𝑋𝑋𝑚𝑚,𝑡𝑡
′ 𝛽𝛽𝑚𝑚 + 𝜀𝜀𝑚𝑚,𝑡𝑡, (1), 

𝜀𝜀𝑚𝑚,𝑡𝑡 = 𝜅𝜅𝑚𝑚,𝑡𝑡
0.5 𝜀𝜀𝑚𝑚,𝑡𝑡, 𝜀𝜀𝑚𝑚,𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1) (2), 

ln𝜅𝜅𝑚𝑚,𝑡𝑡 = ln𝜅𝜅𝑚𝑚,𝑡𝑡−1 + 𝜈𝜈𝑚𝑚,𝑡𝑡 ,𝜈𝜈𝑚𝑚,𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜙𝜙𝑚𝑚) (3). 

The conditional mean is modelled as a linear function of the explanatory variables 
collected in vector Xm,t. The subindex m = {FO1,FO2,FO3,FO4} corresponding to 
one of the forecast origins indicates that data vector Xm,t is specific for every forecast 
origin, reflecting data release timing as discussed in Section 2. In general, the vector 
Xm,t contains an intercept, lags of the dependent variable as well as quarterly values of 
the original monthly indicators so that the variables on both the left- and right-hand 
sides of the regression equation are at the quarterly frequency. The conversion of the 
original monthly indicators to quarterly frequency is achieved by skip-sampling their 
monthly values. For example, a monthly variable 𝑤𝑤𝑡𝑡 is converted to quarterly 
frequency by sampling every third observation of 𝑤𝑤𝑡𝑡 in such a way that all the 
observations pertaining to the first, second and third months in every quarter are 
collected in three quarterly time series 𝑤𝑤𝑡𝑡

(1),𝑤𝑤𝑡𝑡
(2),𝑤𝑤𝑡𝑡

(3) where superscripts (𝑖𝑖) with  
𝑖𝑖 = 1,2,3 indicate the first, second or third month in quarter 𝑡𝑡. 

Essentially, the model in equations (1)–(3) can be considered as an extended version 
of the U-MIDAS model of Foroni et al. (2015), at least in the following two aspects. 
First, the conditional mean in equation (1) can have an arbitrary number of (skip-
sampled) monthly indicators (the maximum is 12 in this application). Observe that the 
original specification of the U-MIDAS model in Foroni et al. (2015) allows only one 
monthly indicator at a time as a straightforward generalisation of the non-linear 
MIDAS models of Ghysels et al. (2004). The second important extension introduces 
stochastic volatility in the mixed-frequency forecasting model (see equations (2) and 
(3)). Thus, in the most general form, the conditional variance of the error term εm,t is 
modelled as a time-varying stochastic process. It also can be switched off, resulting 
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in a model with constant volatility of disturbances as in the original (U-)MIDAS 
model specifications. 

Allowing for multiple indicators in the model generally leads to parameter inflation 
problem, as by means of skip-sampling one high-frequency indicator is converted into 
p low-frequency regressors where p denotes the frequency mismatch parameter.3 In 
such situations OLS estimation of the U-MIDAS model parameters, advocated in 
Foroni et al. (2015), quickly leads to overfitting. One solution, adopted by Carriero et 
al. (2015), is to use the Bayesian approach for estimation of the model parameters as 
well as generation of out-of-sample forecasts. In addition to point forecasts, as a by-
product of Bayesian estimation, density forecasts are generated that take into account 
both the parameter estimation uncertainty and (potentially) time-varying variance of 
the error term. 

3.2 Priors 

For the model in equations (1)–(3) we use normal Minnesota-style priors on the 
coefficient vector 𝛽𝛽𝑚𝑚, characterised by mean zero and diagonal covariance matrix. 
The degree of shrinkage is controlled by the three hyperparameters: 𝜆𝜆1 determines the 
overall rate of shrinkage; 𝜆𝜆2 sets the shrinkage rate of the monthly variables relative 
to that of the lags of the GDP variable; and 𝜆𝜆3 regulates the shrinkage rate imposed 
on the longer lags of the regressors. The diagonal entries of the prior covariance matrix 
for 𝛽𝛽𝑚𝑚 are based on the following: 
− for the intercept, 𝑠𝑠𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = 1000 ∗ 𝜎𝜎𝑦𝑦𝑡𝑡  
− for the lagged dependent variable, 𝑠𝑠𝑑𝑑𝑦𝑦𝑡𝑡−𝑙𝑙 = 𝜆𝜆1/𝑙𝑙𝜆𝜆3  
− for the monthly indicators, 𝑠𝑠𝑑𝑑𝑤𝑤𝑡𝑡−𝑙𝑙

(𝑖𝑖) = 𝜎𝜎𝑦𝑦𝑡𝑡/𝜎𝜎𝑤𝑤𝑡𝑡
(𝑖𝑖) ∗ (𝜆𝜆1𝜆𝜆2)/𝑙𝑙𝜆𝜆3.  

The values 𝜎𝜎𝑦𝑦𝑡𝑡  and 𝜎𝜎𝑤𝑤𝑡𝑡
(𝑖𝑖) are estimated using regression standard errors of AR(4) 

models applied to the dependent and explanatory variables, respectively. The 
hyperparameters are set to 𝜆𝜆1 = 𝜆𝜆2 = 0.2 and 𝜆𝜆3 = 1, which is common in the 
literature as mentioned in Carriero et al. (2015, p. 845). 

Diffuse priors are set for the variance of the error term for models with constant 
volatility. For the models with stochastic volatility, the priors on the volatility 
components are independent of those for the coefficient vector 𝛽𝛽𝑚𝑚. The prior 
distribution of 𝜙𝜙 is characterised by mean equal to 0.035 and 5 degrees of freedom. 
The prior distribution for the initial value of 𝜅𝜅0 is normal, N(ln�̂�𝜅0, 4) where �̂�𝜅0 is the 
regression standard error of the AR(4) model fitted to GDP growth.  

3.3 Model specifications 

Carriero et al. (2015) employ two model specifications, depending on the number of 
monthly indicators included: five- and 12-indicator models, labelled CCM-SML and 
CCM-LRG, respectively. The forecasts of these models are compared with those of 
the benchmark model – the univariate AR(2) model that utilises no external 
information but its own two lagged values. In Figure 3 the specification of the AR(2) 
model is denoted by crisscrossed cells that span a whole quarter such that 𝑋𝑋𝑚𝑚,𝑡𝑡 in 

                                                                 
3 In the case of monthly-quarterly data, p equals three, such that the number of regressors effectively triples. 
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equation (1) reads   
𝑋𝑋𝐹𝐹𝐹𝐹1,𝑡𝑡 = (1, 𝑦𝑦𝑡𝑡−2,𝑦𝑦𝑡𝑡−3)′ and 𝑋𝑋𝐹𝐹𝐹𝐹2,𝑡𝑡 = 𝑋𝑋𝐹𝐹𝐹𝐹3,𝑡𝑡 = 𝑋𝑋𝐹𝐹𝐹𝐹4,𝑡𝑡 = (1,𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡−2)′.4 

Similarly, the model specification of the CCM-SML and CCM-LRG models can be 
inferred from Figure 3. But observe that in the case of high-frequency 
economic/financial indicators each crisscrossed cell indicates a separate quarterly 
time series of skip-sampled monthly values that only contains values in month (𝑖𝑖) of 
each quarter, with 𝑖𝑖 = 1,2,3. For example, for the CCM-SML model we have  

𝑋𝑋𝐹𝐹𝐹𝐹1,𝑡𝑡 = (1, 𝑦𝑦𝑡𝑡−2, 𝑁𝑁𝐼𝐼𝑀𝑀𝑡𝑡−1
(3) , 𝑁𝑁𝐼𝐼𝑀𝑀𝑡𝑡−1

(2) , 𝑁𝑁𝐼𝐼𝑀𝑀𝑡𝑡−1
(1) ,𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡−1

(3) ,  

𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡−1
(2) ,𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡−1

(1) , 𝑁𝑁𝐸𝐸𝑡𝑡−1
(2) , 𝑁𝑁𝐸𝐸𝑡𝑡−1

(1) ,𝑅𝑅𝐼𝐼𝑅𝑅𝐸𝐸𝐸𝐸𝐼𝐼𝑡𝑡−1
(2) ,  

𝑅𝑅𝐼𝐼𝑅𝑅𝐸𝐸𝐸𝐸𝐼𝐼𝑡𝑡−1
(1) ,𝐼𝐼𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝐼𝐼𝑡𝑡−1

(2) ,𝐼𝐼𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝐼𝐼𝑡𝑡−1
(1) )′, with in total 14 regressors. At the next 

forecasting origin the vector 𝑋𝑋𝐹𝐹𝐹𝐹2,𝑡𝑡 = (1, 𝑦𝑦𝑡𝑡−1, 𝑁𝑁𝐼𝐼𝑀𝑀𝑡𝑡
(1),𝐸𝐸𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡

(1))′ has only four 
regressors.5 Observe that for the CCM-LRG model the dimension of the 𝑋𝑋𝑚𝑚,𝑡𝑡 vector 
is 34, 10, 22, and 34 for each forecast origin FO1–FO4. As discussed above, for a 
given sample size typical in the macroeconometric literature, OLS estimation of these 
multiple-indicator U-MIDAS models is likely to have adverse effects on model 
forecasting performance. Indeed, Carriero et al. (2015, p. 844) mention significant 
worsening in forecasting accuracy of the models estimated without shrinkage 
compared to those with Bayesian shrinkage. 

4. EVALUATION METRICS 

The evaluation metrics we use for the assessment of forecast accuracy of the 
individual models are the root mean squared forecast error (RMSFE) for point 
forecasts: 

 (4) 

and the average logarithmic score (ALS) for density forecasts: 

 (5) 

where T is the number of observations in the forecast evaluation sample [τ,τ], an actual 
outturn is denoted yt and the model forecast is denoted . The logarithmic score is 
defined as the negative logarithm of the value of the predictive density at the outturn 

LS(yt) = −lnFt (yt) (6), 

following Gneiting and Katzfuss (2014). Since these evaluation metrics do not depend 
on the forecast origin, we omitted the corresponding subindex m. 

For the pairwise comparison of models' forecast accuracy we use the Relative RMSFE 
(RRMSFE) and the average logarithmic score difference (ALSD) for point and 

                                                                 
4 Observe that at each forecast origin lagged values of the dependent variable, 𝑦𝑦𝑡𝑡−𝑖𝑖, belong to different GDP 
data vintages. For the sake of notational simplicity we have suppressed this notation. 
5 The consequences of including higher lags of skip-sampled monthly variables are investigated in the working 
paper version of Carriero et al. (2015); see Carriero et al. (2013). It is reported there that their inclusion did 
not affect the results much compared to more parsimonious models. 
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density forecasts respectively. The RRMSFE and ALSD are defined as follows for 
each pair of models 1 and 2: 

 (7) 

ALSD2/1 = ALS2 − ALS1 (8). 

Since both the RMSFE and ALSD are negatively oriented scores, meaning that their 
larger values indicate less precise point and density forecasts, their positive/negative 
values indicate that on average the forecasting performance of model 2 is worse/better 
than that of model 1. 

In addition to evaluation metrics based on the forecasting performance averaged over 
the forecast evaluation sample, we use the following measures of forecast accuracy: 
the cumulated sum of squared forecast error difference (CSSFED) of Welch and 
Goyal (2008) and the cumulated sum of logarithmic score difference (CSLSD), also 
known as the cumulative log predictive Bayesian factors for recursive evaluation of 
point and density forecasts, respectively. While the advantages of using recursive 
metrics for comparison of models' forecast densities were already highlighted in 
Geweke and Amisano (2010, p. 220) stating that this way of model comparison "(..) 
shows how individual observations contribute to the evidence in favor of one model 
over another. For example, it may show that a few observations are pivotal in the 
evidence strongly favoring one model over another", the use of such recursive metrics 
as the CSSFED for comparison of point forecasts is still rare in the macroeconomic 
forecasting literature. 

Denoting by 𝑒𝑒1,𝑡𝑡 and 𝑒𝑒2,𝑡𝑡 the forecast errors of models 1 and 2 in period 𝑡𝑡, the CSSFED 
is computed as follows  

𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐸𝐸𝑁𝑁�𝜏𝜏,𝜏𝜏�,2/1 = ∑𝑡𝑡
𝑠𝑠=𝜏𝜏 (𝑒𝑒2,𝑠𝑠

2 − 𝑒𝑒1,𝑠𝑠
2 )    𝑓𝑓𝑓𝑓𝑓𝑓    𝑡𝑡 ∈ �𝜏𝜏, 𝜏𝜏� (9) 

where �𝜏𝜏, 𝜏𝜏� denotes the forecast evaluation sample. The CSLSD is defined as follows:  

𝐶𝐶𝐼𝐼𝐸𝐸𝐼𝐼𝑁𝑁�𝜏𝜏,𝜏𝜏�,2/1 = ∑𝑡𝑡
𝑠𝑠=𝜏𝜏 (𝐸𝐸𝐼𝐼2(𝑦𝑦𝑠𝑠)− 𝐸𝐸𝐼𝐼1(𝑦𝑦𝑠𝑠))    𝑓𝑓𝑓𝑓𝑓𝑓    𝑡𝑡 ∈ �𝜏𝜏, 𝜏𝜏� (10). 

The recursive measures of forecast accuracy dissect the forecasting performance of 
the models observation by observation, illustrating how the relative forecasting 
performance evolves over time. As a result, both the CSSFED and CSLSD deliver a 
sequence of cumulative differentials, as opposite to aggregated measures of 
forecasting performance that deliver a point estimate. The recursive measures are 
helpful in distinguishing sources of domination of one model over its competitor in 
terms of forecasting accuracy. For example, a steady increasing CSSFED2/1 indicates 
that the forecasting gains of model 1 over model 2 slowly accrue over time, i.e. the 
squared errors of model 2 tend to be marginally but systematically larger than those 
of model 1. Correspondingly, an upwards trending CSLSD2/1 would indicate that the 
log-scores of model 1 tend to be marginally but systematically smaller than those of 
model 2, favouring the former. By the same token, a steady decreasing sequence of 
CSSFED/CSLSD indicates the opposite. A CSSFED/CSLSD sequence that evolves 
horizontally indicates that none of the competing models produces more accurate 
forecasts in a systematic manner. 

CSSFED/CSLSD may also display abrupt jumps, indicating that in a given period t∗ 
the differential of squared forecast errors/log-scores is substantially larger than those 
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observed for the most of the observations. From the point of view of a forecasting 
practitioner, it is of special interest to detect such periods when one model suddenly 
displays worsening in its forecasting accuracy relative to its competitor. When 
comparing models in terms of their average forecasting performance, these periods 
turn out to be very influential for relative model ranking. 

5. RESULTS 

5.1 Point forecasts 

Table 2 contains the results of point forecasting performance of the benchmark and 
the multiple-indicator models with constant volatility. We report the RMSFE and 
RRMSFE for the whole sample as well as separately for its expansionary and 
recessionary sub-periods. Observe that the forecasting accuracy reported for  
CCM-SML and CCM-LRG with constant volatility for the full sample in the upper 
panel of Table 2 is comparable with that reported for the corresponding models Small 
BMF and Large BMF in Table 2 of Carriero et al. (2015, p. 849). As in the original 
study, we notice that the RMSFE steadily decreases both in absolute value and value 
relative to the benchmark AR(2) model, as more information is incorporated into the 
indicator-augmented forecasting models. For example, as measured by the RRMSFE, 
the multiple-indicator models bring about 7% and 21%–22% gains in terms of 
RMSFE relative to the benchmark model at the first (FO1) and last (FO4) forecast 
origins, respectively. 

We, however, are interested in determining whether such encouraging evidence in 
favour of the multiple-indicator models remains if we split the forecast evaluation 
sample into recessionary and expansionary sub-periods. The evidence reported in the 
middle and lower panels of Table 2 for the boom and bust periods suggests that this 
is not the case. First, we observe a large discrepancy between business cycle phases 
in the reported RMSFEs of the benchmark model. The RMSFEs in the recessionary 
periods are more than twice as large as in the expansionary periods. 

Table 2  
Point forecast accuracy 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 RMSFE RRMSFE•/AR(2)* 
Full sample 
AR(2) 2.237 2.102 2.081 2.074     
CCM-SML 2.082 1.906 1.723 1.605 –0.069 –0.093 –0.172 –0.226 
CCM-LRG 2.074 1.831 1.693 1.622 –0.073 –0.129 –0.186 –0.218 
Boom sample 
AR(2) 1.710 1.705 1.692 1.691     
CCM-SML 1.731 1.669 1.647 1.567 0.013 –0.021 –0.027 –0.073 
CCM-LRG 1.696 1.678 1.708 1.631 –0.008 –0.016 0.009 –0.035 
Bust sample 
AR(2) 4.339 3.802 3.751 3.72     
CCM-SML 3.636 3.042 2.160 1.835 –0.162 –0.200 –0.424 –0.508 
CCM-LRG 3.709 2.630 1.590 1.556 –0.145 –0.308 –0.576 –0.582 
* The symbol • in RRMSFE•/AR(2) denotes the name of a competing multiple-indicator model, i.e. CCM-SML or CCM-LRG. 



ASSESSING NOWCAST ACCURACY OF US GDP GROWTH IN REAL TIM E: THE ROLE OF BOOMS AND BUSTS 
 

 

 

14 

Second, for the multiple-indicator models we observe a similar situation, but the 
difference between the phase-specific RMSFEs is narrowing with the forecast origin 
for CCM-SML and CCM-LRG for all FO1–FO4 and disappears for CCM-LRG at 
FO3–FO4. This finding conforms with that of Chauvet and Potter (2013) that the 
forecasting ability of macroeconometric models significantly worsens during 
recessions. However, we find that at least for the models in question this is true for 
models based on the partial information set, i.e. the univariate benchmark model, the 
CCM-SML model that uses only five out of 12 available indicators and the CCM-
LRG model with all the 12 indicators but for the earliest forecast origins FO1–FO2. 

Third, the asymmetry in the forecasting ability of the indicator-augmented models is 
even more pronounced when measured in the relative terms with respect to the 
benchmark model. During expansions at the earlier forecast origins FO1–FO3, there 
is a barely noticeable difference as measured by the relative RMSFE that takes values 
in the range from –2.7% to 1.3%. It is only for FO4 that the RRMSFE reaches –7.3% 
for CCM-SML and –3.5% for CCM-LRG, implying substantially lower 
improvements over the benchmark model than recorded for the whole sample. At the 
same time, during the NBER recessions there is a very noticeable improvement in the 
forecasting ability of the indicator-augmented models compared to the benchmark 
model. The RRMSFE is about –15% at FO1, reaching impressive –50.8% and –58.2% 
for CCM-SML and CCM-LRG. The information on the RMSFEs reported in Table 2 
is visually presented in Figure 4. 

Figure 4 
RMSFE summary 

 
The actual outturns and forecast values for CCM-SML and CCM-LRG at FO4 are 
shown in Figures 5(a) and 5(c). The corresponding CSSFEDs of the indicator-
augmented models with respect to the benchmark model are displayed in Figures 5(b) 
and 5(d) for all forecast origins. Examination of the plotted CSSFEDs exposes the 
causes of the asymmetry in forecasting performance as measured by the RRMSFEs in 
Table 2. The jumps in the CSSFEDs observed during recessions indicate that during 
the shaded periods the benchmark model produces much larger (squared) forecast 
errors than the multiple-indicator models. During the expansionary periods, the 
CSSFEDs display largely horizontal movements, indicating that none of the 
competing models systematically exhibits greater forecasting accuracy. 
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Figure 5  
Recursive assessment of point forecast accuracy; CCM-SML/CCM-LRG vs AR(2) 

(a) CCM-SML      (b) CCSFED AR(2)/CCM-SML 

 
(c) CCM-LRG (d) CCSFED AR(2)/CCM-LRG  

 

5.2 Density forecasts 

The results of the evaluation of the performance of the models in terms of density 
forecasts are summarised in Table 3. In line with Carriero et al. (2015), density 
forecasts were generated from the indicator-augmented and benchmark models with 
stochastic volatility. Observe that for the full sample these results are very close to 
those reported for the models Small BMFSV and Large BMFSV in Carriero et al. 
(2015, Table 3, p. 852). 

In addition, there are interesting parallels that can be drawn when comparing density 
forecasts with point forecasts reported in Sub-section 5.1. First, there is a large 
discrepancy in the quality of density forecasts generated by the benchmark model. In 
recessions the reported ALSs are much higher than in expansions. Second, we observe 
a similar pattern for the multiple-indicator models, but the differences in density 
forecast accuracy are more pronounced at the earlier forecast origins. For both 
indicator-augmented models the difference narrows steadily with each forecast origin, 
and for the CCM-LRG-SV model it practically disappears as early as at FO3. Third, 
the improvement in relative forecast accuracy of multiple-indicator models over the 
benchmark model measured in terms of ALSD steadily increases. For example, for 
the CCM-LRG-SV the ALSD is reported as –0.347 at FO1, which is to be compared 
with the corresponding value of –1.107 at FO4. The information on ALSs reported in 
Table 3 is visually presented in Figure 6. 
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Table 3  
Density forecast accuracy 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 ALS ALSD•/AR(2)–SV* 
Full sample 
AR(2)-SV 2.253 2.166 2.159 2.182     
CCM-SML-SV 2.207 2.090 1.965 1.891 –0.046 –0.076 –0.195 –0.292 
CCM-LRG-SV 2.165 2.063 1.959 1.913 –0.088 –0.103 –0.200 –0.270 
Boom sample 
AR(2)-SV 2.092 2.043 2.044 2.059     
CCM-SML-SV 2.054 2.001 1.926 1.873 –0.038 –0.042 –0.118 –0.185 
CCM-LRG-SV 2.043 1.996 1.956 1.915 –0.049 –0.047 –0.088 –0.144 
Bust sample 
AR(2)-SV 3.324 2.982 2.926 3.004     
CCM-SML-SV 3.223 2.682 2.223 2.006 –0.101 –0.300 –0.703 –0.998 
CCM-LRG-SV 2.977 2.508 1.976 1.898 –0.347 –0.474 –0.950 –1.107 
* The symbol • in ALSD•/AR(2)-SV denotes the name of a competing multiple-indicator model, i.e. CCM-SML-SV or CCM-LRG-SV. 

Figure 6  
ALS summary 

 
Additional information on the relative forecasting performance of the models can be 
obtained from the CSLSDs displayed in Figure 7. The observed jumps during the 
shaded periods reveal the main sources of the relatively better forecasting 
performance of indicator-augmented models in comparison to univariate benchmark 
model. 

Figure 7  
Recursive assessment of density forecast accuracy; CCM-SML-SV/CCM-LRG-SV vs AR(2)-SV 

(a) CSLSD AR(2)-SV/CCM-SML-SV     (b) CSLSD AR(2)-SV/CCM-LRG-SV 
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All in all, the conclusions on the importance of distinguishing between business cycle 
phases when evaluating models in terms of their out-of-sample accuracy made for 
point forecasts are equally valid for density forecasts. The consequences of ignoring 
it are also qualitatively similar: reporting ALSD for the whole period generally biases 
the evaluation of the relative forecasting performance of the models in favour of 
indicator-augmented models during expansions and consequently understates their 
predictive ability during recessions. 

5.3 Impact of stochastic volatility 

In this sub-section we reassess the consequences on accuracy of point and density 
forecasts from introducing stochastic volatility into multiple-indicator models. For the 
full sample, this was already done in Carriero et al. (2015). They conclude that though 
there is no noticeable effect on the accuracy of point forecasts, adding stochastic 
volatility to the models greatly enhances the accuracy of density forecasts – a 
conclusion already established in related research (Clark (2011)). 

It is of interest to verify whether these conclusions hold if one compares the point and 
density forecasting performance of multiple-indicator models with and without 
stochastic volatility separately for expansions and recessions, similarly as we have 
done above when we compared their performance with the benchmark model. 

The effect of stochastic volatility on point and density forecast accuracy is reported in 
Table 4. The upper panel reports the values of RRMSFE•−SV/• with • = CCM-SML, 
CCM-LRG for the full sample as well as for expansionary and recessionary sub-
periods. An overall impression is that adding stochastic volatility to the model, when 
the purpose is generation of point forecasts, does not result in systematic 
improvements. This finding appears to hold both when evaluated for the whole sample 
and across business cycle phases. Depending on the forecast origin and the model 
(CCM-LRG or CCM-SML), the RRMSFE varies in the range from –0.053 to 0.107. 

Table 4  
Impact of stochastic volatility on forecast accuracy 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 

 Full sample Boom sample Bust sample 
Point forecasts: RRMSFE•−SV/• 
CCM-SML 0.011 0.007 0.000 –0.019 0.001 0.002 –0.011 –0.024 0.027 0.018 0.043 0.001 

CCM-LRG –0.016 0.009 0.005 –0.025 0.010 0.010 –0.009 –0.029 –0.053 0.007 0.107 0.007 
Density forecasts: ALSD•−SV/• 
CCM-SML –0.194 –0.215 –0.197 –0.214 –0.296 –0.265 –0.222 –0.224 0.479 0.121 –0.034 –0.147 

CCM-LRG –0.203 –0.184 –0.133 –0.134 –0.264 –0.227 –0.140 –0.133 0.201 0.105 –0.087 –0.141 

The symbol • in RRMSFE•−SV/• and ALSD•−SV/• denote the name of a multiple-indicator model, i.e. either CCM-SML or CCM-LRG. 

A more interesting pattern emerges when one analyses the effect of stochastic 
volatility on the accuracy of density forecasts (see the lower panel of Table 4). The 
entries in the panel are differences in ALS between models with stochastic and 
constant volatility in the residual error term, ALSD•−SV/•. Negative entries imply that 
on average density forecast accuracy of the models with stochastic volatility is higher, 
positive entries indicate the opposite. As can be seen, for the full sample as well as for 
expansions the models with stochastic volatility produce lower ALSs than their 
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counterparts with constant volatility. This is in line with the results reported in 
Carriero et al. (2015). However, for recessions the situation is different. For both 
models (CCM-SML and CCM-LRG) there is a positive difference in ALS at FO1–
FO2, implying that the model versions with stochastic volatility produce inferior 
density forecasts than their homoscedastic counterparts. At the later forecast origins, 
FO3–FO4, this difference is negative. 

In tracking the reason for this at the first glance surprising result, it is instructive to 
inspect plots of CSLSD for models with stochastic and constant volatility. These are 
displayed in Figure 8. In general, an upwards trending behaviour of the CSLSDs 
indicates more or less steady gains in density forecast accuracy of models with 
stochastic volatility over those with constant volatility. This behaviour is to be 
expected as the models with contant volatility cannot capture the reduction in the 
unconditional volatility of GDP growth since 1985, i.e. in the Great Moderation 
period. As a result, models with constant volatility tend to produce predictive densities 
that are too wide in comparison with those produced by models with stochastic 
volatility that are able to accommodate a decrease in the GDP volatility, and hence 
reduce the forecast uncertainty of GDP growth in the current quarter. 

Figure 8  
Impact of stochastic volatility on density forecast accuracy 

(a) CSLSD CCM-SML/CCM-SML-SV` (b) CSLSD CCM-LRG/CCM-LRG-SV 

 
However, there are several observations when the latter models produced more 
accurate density forecasts. These observations belong to the recession period in the 
early 1990s, and especially the Great Recession. 

For the CSLSDCCM-SML/CCM-SML-SV the worse performance is visible at all forecast 
origins during the Great Recession, whereas for the CSLSDCCM-LRG/CCM-LRG-SV it occurs 
at FO1–FO2 during the Great Recession and FO3–FO4 in the aftermath of the Great 
Recession. This points towards inferior predictive densities of SV-augmented models 
during the post-recession recovery period. 

An explanation for this observation based on inspection of the CSLSD can be given 
using Figure 9, where the density forecasts from CCM-SML and CCM-SML-SV at 
FO1 are displayed for one representative quarter for the expansionary periods (the 
second quarter of 2007) and recessionary periods (the fourth quarter of 2008). As 
discussed above, the model with constant volatility (the blue line) produces too wide 
predictive densities in comparison with the model with stochastic volatility (the red 
line). The black vertical line denotes the outturn of the GDP growth rate in the 
respective quarter. During the representative expansionary quarter (the second quarter 
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of 2007), the model with SV produces lower log score than the model without SV.6 

As shown in Figure 8, producing upward-sloping CSLSDs appears to be the rule rather 
than an exception. However, during the recessionary quarter (the fourth quarter of 
2008), when the actual value lies much farther in the negative area than it used to be 
in normal times, the curse of the longer tail of the model with constant volatility turns 
into a blessing, resulting in a lower log score value than that produced by the model 
with time-varying variance of the error term. 

Figure 9 
Predictive densities for CCM-SML model at FO1 

 
The following lesson can be learned from this exercise of comparing density forecasts 
from models with constant and time-varying volatility of the error term. For the data 
at hand introducing stochastic volatility brings about more accurate density forecasts 
most of the times. However, there might be several outturns that lie farther out in the 
tails, especially, during periods of economic downturns and, possibly, during the post-
recession recoveries, when fatter tails of models with constant volatility may help in 
producing relatively lower log scores. In this respect it is worthwhile pointing out that 
models with stochastic volatility that were superior in capturing nowcast uncertainty 
most of the times failed to do so during crisis periods when there is stronger than ever 
demand for accurate assessment of economic conditions and risks involved. 

As a final word, we used the additional example presented in this section in order to 
illustrate the benefits of recursive measures of models' relative forecast accuracy. We 
were able to uncover peculiarities in the relative forecasting performance of the 
models that remain concealed to Carriero et al. (2015) who relied on traditional 
evaluation methods. 

6. CONCLUSIONS 

In this paper we have re-assessed the forecasting performance of the model suggested 
in Carriero et al. (2015). The model is characterised by a number of practical features 
like dealing with mixed-frequency data, stochastic volatility and the Bayesian 
approach to estimation and generation of both point and density forecasts that make it 
highly appealing as a workhorse model at policy-making institutions such as central 
banks which continuously engage in nowcasting and forecasting activity. 

Our research is motivated by the recent study of Chauvet and Potter (2013) that 
documented asymmetric performance of several popular state-of-the-art structural and 
                                                                 
6 Recall from equation (6) that the log score is computed as the negative (logarithmic) value of the predictive 
density at the realised outturn value, i.e. the intersection of the vertical black line with the blue and red lines 
for models with constant and stochastic volatility, respectively. 
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reduced-form macroeconometric models during expansions and recessions. Chauvet 
and Potter (2013) report their findings for models estimated using macroeconomic 
data sampled at a single (quarterly) frequency. In this paper we extend their analysis 
to forecasting models that utilise mixed-frequency data sampled both at the quarterly 
frequency such as GDP growth and monthly frequency such as economic and financial 
indicators like surveys, labour-market statistics, industrial production and interest 
rates. Such models utilise the informational flow within each quarter and hence allow 
making forecasts more than once per quarter in comparison to models estimated with 
only quarterly data. 

Our main finding is that the conclusions of Chauvet and Potter (2013) hold also in our 
study. We record that during expansions the forecasting ability of more sophisticated 
models that rely on a larger information set are comparable to the forecast accuracy 
of benchmark univariate AR(2) model. It is only during recessions that indicator-
augmented models substantially improve upon the benchmark model. 

Our results have important implications when reporting the results of forecasting 
competitions by averaging them over the whole forecast sample typically involving 
both recessions and expansions. Failure to acknowledge business cycle asymmetries 
in the forecast accuracy of a more sophisticated forecasting model relative to 
benchmark models typically results in exaggeration of the relative forecasting 
accuracy of the former in expansions and, consequently, understatement during 
recessions. This delivers a biased message to anyone interested in forecasts – be it the 
general public, academics, practitioners or policy-makers. 

In addition to evaluation of the relative forecasting performance separately for 
expansions and recessions, we use recursively computed metrics in order to illustrate 
our findings on the differences in relative forecasting ability of models across the 
business cycle phases. We used these recursively computed measures in order to 
uncover previously unnoticed features of forecasts from models with time-varying 
variance of the error term. Previous research widely documents that when dealing with 
US data, inclusion of stochastic volatility typically brings about more accurate density 
forecasts. However, we discover that models with stochastic volatility may sometimes 
underestimate the uncertainty around forecasts in comparison with models with 
constant volatility. In our study, we document this outcome in situations when it is 
least desired and expected, i.e. during crisis or post-crisis recovery periods when 
outcomes lie farther out in the tails of the GDP growth distribution. 

As a final word, in our study we examined the forecasting performance of the model 
suggested in Carriero et al. (2015). By focusing only on one model type we were able 
to deliver a clear message on how our results compare with those of Carriero et al. 
(2015) serving as a well-documented benchmark. Undoubtedly, our analysis can be 
extended to other types of models such as mixed-frequency VARs (Schorfheide and 
Song (2015), McCracken et al. (2015), Mikosch and Neuwirth (2015)) though none 
of those incorporates stochastic volatility, mixed-frequency factor models (Marcellino 
et al. (2016), Marcellino and Schumacher (2010)) as well as models featuring regime-
switching behaviour like a mixed-frequency version of the AR-dynamic factor model 
with Markov switching that fared very well in Chauvet and Potter (2013). An 
additional avenue for future research is to consider more sophisticated models for 
stochastic volatility proposed in Chan (2017) and Zhang et al. (2018). Extending our 
analysis to other data than US GDP seems also a fruitful research direction.  
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APPENDIX 

In the Appendix we provide additional results on the asymmetric forecasting 
performance of econometric models across the business cycle phases. In Section A 
we address the question of chosing the benchmark model. To this end, we compare 
two popular choices for benchmark models in the forecasting literature: the AR(2) and 
historical-mean or RW models. 

Next, we are interested in comparing two approaches to data aggregation: pooling 
many indicators into one model and pooling many SIMs by resorting to certain model 
combination schemes commonly used in the literature. The former approach was 
undertaken in the main text and the latter approach was used in Mazzi et al. (2014) 
when focusing specifically on density forecast combinations in mixed-frequency 
models. We intend to provide empirical evidence on this question using the data set 
at hand and explicitly comparing the model-pooling approach of Mazzi et al. (2014) 
with the data-pooling approach of Carriero et al. (2015). To this end, we evaluate 
forecasting performance of models augmented only with one indicator at a time – the 
so-called SIMs – and then we evaluate forecasting performance of combinations of 
these SIMs both in terms of point and density forecasts. The results of this exercise 
are reported in Section B for the SIMs and in Section C for their combinations. In 
Section D we evaluate the impact of stochastic volatility on the accuracy of point and 
density forecasts for these additional models. 

Additional models 
For the two benchmark models the conditional mean in equation (1) is specified as 
follows: for the AR(2) model the vector 𝑋𝑋𝑚𝑚,𝑡𝑡 is 𝑋𝑋𝑚𝑚,𝑡𝑡 = (1,𝑦𝑦𝑡𝑡−2,𝑦𝑦𝑡𝑡−3)′ for 𝑚𝑚 = FO1 
and 𝑋𝑋𝑚𝑚,𝑡𝑡 = (1, 𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡−2)′ for 𝑚𝑚 = FO2,...,FO4; for the RW model the vector 𝑋𝑋𝑚𝑚,𝑡𝑡 =
(1) consists only of the intercept at all forecast origins. 

The SIMs are constructed by allowing one monthly indicator at a time to be selected 
as a regressor. In sequel, we refer to such models as SIM-• where the symbol • stands 
for an abbreviation used for each of the monthly indicators (see Table 1). For such 
models the conditional mean at each forecast horizon is either: 

FO1: , 

FO2: ,  

FO3: , 

FO4:  

if an indicator is released during the first week of each month or 

FO1: , 

FO2: Xm,t = (), 

FO3: , 

FO4:  
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if a variable is released during the second week of each month. Observe that for this 
group of variables none of the contemporaneous values for the current quarter t is 
released at the second forecast origin, FO2. Therefore, similarly to Carriero et al. 
(2015), we do not estimate any model with any of these variables at FO2. 

Furthermore, we use the SIMs in order to form their model combinations based on 
their past point and density forecasting performance. For model combinations based 
on the past point forecast performance we use (a) an equal weighting scheme as well 
as (b) time-varying weights that are recursively determined based on a discounted 
mean squared forecast error (MSFE) 𝜆𝜆𝑚𝑚,𝑡𝑡,𝑖𝑖 = ∑𝑡𝑡−ℎ𝑚𝑚

𝑠𝑠=𝜏𝜏 𝛿𝛿𝑡𝑡−ℎ𝑚𝑚−𝑠𝑠(�̂�𝑒𝑚𝑚,𝑠𝑠,𝑖𝑖)2, with the 
discounting factor 0 < 𝛿𝛿 ≤ 1. ℎ𝑚𝑚 is the delay in quarters that is the specific of every 
forecast origin indicating availability of the second release of GDP data allowing us 
to calculate forecast errors at the forecast origin in question: for FO1/FO2 and 
FO3/FO4 the delay parameter is ℎ𝑚𝑚 = 2 and ℎ𝑚𝑚 = 1. The combination weights are 
computed using the following expression:  

𝒲𝒲𝑚𝑚,𝑡𝑡,𝑖𝑖 = 𝜆𝜆𝑚𝑚,𝑡𝑡,𝑖𝑖
−1

∑𝑛𝑛𝑗𝑗=1𝜆𝜆𝑚𝑚,𝑡𝑡,𝑗𝑗
−1  (11). 

We initialise the weighting scheme by using equal weights for all estimated models at 
a given forecast origin. 

For model combinations based on their past density forecasting performance we 
follow Mazzi et al. (2014) in using the linear opinion pool approach:  

𝐸𝐸𝐸𝐸𝑚𝑚,𝑡𝑡 = ∑𝑖𝑖
𝑗𝑗=1 𝒲𝒲𝑚𝑚,𝑡𝑡,𝑗𝑗ℱ𝑚𝑚,𝑡𝑡,𝑗𝑗      𝑓𝑓𝑓𝑓𝑓𝑓      𝑡𝑡 ∈ (𝜏𝜏, 𝜏𝜏) 

where ℱ𝑚𝑚,𝑡𝑡,𝑘𝑘 is the nowcast density from a model 𝑘𝑘 = 1, . . . ,𝑛𝑛 for quarter 𝑡𝑡. As above 
for point forecasts, we set the weights in two ways (a) by using equal weights for all 
model nowcast densities and (b) by using recursive weights. Denoting by lnℱ𝑚𝑚,𝑡𝑡,𝑗𝑗(𝑦𝑦𝑡𝑡) 
the logarithm of the value of the nowcast density at the outturn 𝑦𝑦𝑡𝑡, the recursive 
weights are determined as follows:  

𝒲𝒲𝑚𝑚,𝑡𝑡,𝑘𝑘 =
exp�∑𝑡𝑡−ℎ𝑚𝑚𝑠𝑠=𝜏𝜏 lnℱ𝑚𝑚,𝑠𝑠,𝑘𝑘(𝑦𝑦𝑠𝑠)�

∑𝑛𝑛𝑗𝑗=1 exp�∑
𝑡𝑡−ℎ𝑚𝑚
𝑠𝑠=𝜏𝜏 lnℱ𝑚𝑚,𝑠𝑠,𝑗𝑗(𝑦𝑦𝑠𝑠)�

 (12) 

where ℎ𝑚𝑚 takes values of one and two for FO1–FO2 and FO3–FO4, respectively, as 
in the case of point forecast combination. We initialise the weighting scheme by using 
equal weights for all estimated models at a given forecast horizon. 

We denote model combinations based on point forecasting performance with equal 
weighting by CPF-EW and with recursively defined weights by CPF-RW100, CPF-
RW090 and CPF-RW030, each corresponding to the following values of the 
discounting factor δ = 1,0.90,0.30. The model combinations based on density 
forecasting performance are denoted by CDF-EW and CDF-RW for those determined 
by equally and recursively defined weights. 

  



ASSESSING NOWCAST ACCURACY OF US GDP GROWTH IN REAL TIM E: THE ROLE OF BOOMS AND BUSTS 
 

 

 

23 

A. Comparative performance of the benchmark models 

A.1 Point forecasts 
When comparing models in terms of point forecast accuracy, Carriero et al. (2015) 
used a univariate AR(2) model with constant volatility as a benchmark model. In this 
sub-section we conduct an additional analysis for the choice of the benchmark model 
by comparing the forecasting performance of the AR(2) model with that of the RW 
model. 

The actual values of GDP growth together with forecasts produced by the AR(2) and 
RW models are shown in Figure A.1.7 The forecasts of the AR(2) model fluctuate 
around those of the RW model. Notably, it is easy to recognise that in times of 
recessions the AR(2) model produces more accurate forecasts as its forecasts tend to 
be below those of the RW model and hence much closer to the outturns of GDP 
growth. At the same time, during expansions it is not that obvious that the former 
model on average tends to produce more accurate forecasts than the latter one. In order 
to sort this out, we resort to the formal statistical analysis below. 

Figure A.1  
Outturns and point forecasts from the benchmark AR(2) and RW models 

 
Further information on the comparative forecasting performance of these two models 
is provided in the left and right panels of Figure A.2. In the left panel squared forecast 
errors for both models are shown making it evident that in times of recessions their 
magnitude tends to be larger than in times of expansions. In the right panel we report 
differences in the squared forecast errors which also tend to be larger in recessions 
than in expansions. This finding may imply that differences in the overall forecasting 
performance measured by the RMSFE for the whole forecasting sample are mainly 
driven by the observations pertaining to recessions rather than to expansions. We will 
verify this idea formally below by comparing forecasting accuracy of these models 
for the full forecast evaluation sample as well as for its boom and bust sub-samples. 

Additional information on relative forecasting performance in terms of point forecasts 
is provided by the CSSFED displayed in Figure A.3. In expansionary periods the 
CSSFED mostly displays flat horizontal movements. As discussed in Section 4, the 
dynamics conform with the idea that during expansions there is no systematic 
difference between forecast accuracy of these two models. In contrast, during 
recessions there are noticeable jumps in the CSSFED indicating that the RW model 
produces much larger squared forecast errors than the AR(2) one. 
  

                                                                 
7 In order to keep the discussion concise, we limit it to forecasting results reported for the forecast origin FO4. 
The results obtained for the rest of the forecast origins are qualitatively very similar. 
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Figure A.2  
Squared point forecast errors from the AR(2) and RW models and their difference 

(a) Squared forecast errors,  (b) Squared forecast error difference, 
AR(2) and RW models  FE2

RW,t – FE2
AR(2),t 

 
Figure A.3 
Point forecast accuracy, CSSFEDRW/AR(2) 

 
The results of the formal comparison in terms of RMSFEs and RRMSFEs are reported 
in Table A.1 for the full forecast sample as well as for its boom and bust sub-samples. 
Several interesting observations can be made. First, both models display much larger 
average values of (squared) forecast errors during recessions than expansions. This 
means that reporting RMSFE for the full sample understates forecast accuracy of the 
models in question during expansions and overstates it during recessions. 

Table A.1 
Point forecast accuracy, univariate benchmark models 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 RMSFE RRMSFERW/AR(2) 
Full sample 
AR(2) 2.237 2.102 2.081 2.074     
RW 2.296 2.289 2.259 2.280 0.027 0.089 0.086 0.099 
Boom sample 
AR(2) 1.710 1.705 1.692 1.691     
RW 1.713 1.716 1.695 1.712 0.002 0.006 0.002 0.013 
Bust sample 
AR(2) 4.339 3.802 3.751 3.726     
RW 4.562 4.526 4.461 4.499 0.051 0.190 0.189 0.207 
 

Second, during expansions the values of RMSFEs of the RW model are comparable 
to those of the AR(2) model. It is only during recessions when the difference between 
models' RMSFE values becomes non-negligible with the AR(2) model, delivering 
greater forecast accuracy. This result has implications for comparing models in terms 
of their forecasting accuracy for the whole sample. In doing so, one tends to 
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exaggerate relative forecasting performance of the AR(2) model with respect to that 
of the RW model during expansions and, conversely, to understate it during 
recessions. For example, from the relative RMSFEs reported in the right panel of 
Table A.1 one can deduce that the RW model produces an RMSFE that is higher than 
that of the AR(2) model by up to 10% when these RMSFEs are computed over the 
whole forecast evaluation sample. At the same time, during booms the RW model 
produces RMSFE that is higher than that of the AR(2) model at most by about 1%. 
During busts the RW model produces an RMSFE that is higher than that of the AR(2) 
model up to about 20%. 

Lastly, the fact that the AR(2) model excels over the RW model only during recessions 
and that both benchmark models produce very similar forecast accuracy during 
expansions implies that when comparing forecasting performance of the quarterly US 
GDP growth rate against the benchmark AR(2) model during expansions the 
comparison is effectively done against forecast accuracy of a historical mean model 
(Carriero et al. (2015), Chauvet and Potter (2013), inter alia). 

A.2 Density forecasts 
When comparing models in terms of density forecast accuracy, Carriero et al. (2015) 
used a univariate AR(2) model with stochastic volatility as a benchmark model. In 
this sub-section we conduct an additional analysis for the choice of the benchmark 
model by comparing the AR(2) and RW models in terms of density forecast accuracy. 
Average values of log scores and their difference for the models in question are 
presented in Table A.2. The asymmetry in the forecasting performance of the models 
across business cycle phases also manifests itself for density forecasts. Similarly, as 
in the case of point forecasts density forecasts are more accurate during expansions 
than during recessions when comparing the average log scores reported for each of 
the business cycle phases. This asymmetry is much more pronounced for the RW 
model. When comparing the relative forecasting performance of these two models, it 
is noticeable that the ALSDRW-SV/AR(2)-SV values are much more negative in recessions 
than in expansions. This indicates that the lion's share of the evidence in favour of the 
AR(2) model over the RW model stems from recession periods. 

Table A.2  
Density forecast accuracy, univariate benchmark models 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 ALS ALSDRW-SV/AR(2)-SV 
Full sample 
AR(2)-SV 2.253 2.166 2.159 2.182     
RW-SV 2.294 2.261 2.237 2.239 0.041 0.096 0.078 0.057 
Boom sample 
AR(2)-SV 2.092 2.043 2.044 2.059     
RW-SV 2.106 2.091 2.090 2.088 0.014 0.048 0.046 0.029 
Bust sample 
AR(2)-SV 3.324 2.982 2.926 3.004     
RW-SV 3.543 3.393 3.218 3.245 0.219 0.412 0.292 0.241 
 

Additional information on relative forecasting performance of univariate models in 
terms of density forecasts is provided by the CSLSD displayed in Figure A.4. The 
strongest increases in the CSLSD can be observed during recessions. In contrast, 
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during the periods between recessions the CSLSD displays more heterogeneous 
dynamics: there are some periods with practically horizontal movements, periods 
characterised by upwards trends, especially shortly before or shortly after recessions, 
and some periods with (slightly) downwards trending dynamics. Such difference in 
the CSLSD dynamics during booms and busts explains differences in the ALS values 
reported in Table A.2 supporting the conclusion that most of the evidence driving 
differences in the forecasting accuracy of the competing models is due to observations 
during recessions. 

Figure A.4  
Denstity forecast accuracy, CSLSRW-SV/AR(2)-SV 

 

B. Single-Indicator Model 

B.1 Point forecasts 
The forecasting performance of SIMs against the benchmark AR(2) model is 
summarised in Table B.1.8 Here again we report the RMSFEs and RRMSFEs against 
the benchmark model for the full sample as well as for its two sub-samples. A look at 
the reported RMSFEs in the table reveals that also for the SIMs there is a strong 
evidence of asymmetric forecasting performance during booms and busts. In absolute 
value the RMSFEs are higher during busts than booms for all SIMs. This finding is 
consistent with the statement of Chauvet and Potter (2013) that during recessions it is 
more difficult to forecast than during expansions. We also notice that the forecasting 
performance varies from one indicator to another. One can single out several 
indicators such as ISM, EMPLOY, ORDERS that provide much more accurate 
forecasts than others. The rest of indicators tend to be less informative both when their 
forecasting performance is evaluated either for the whole sample or for its sub-
samples. 

The heterogeneous results in reported RMSFE have also implications when one 
evaluates the forecasting performance of the SIMs relative to that of the benchmark 
AR(2) model (see the right panel of Table B.1). When evaluated for the whole sample, 
the three SIMs (ISM, EMPLOY, ORDERS) display the largest gains in the forecasting 
accuracy relative to the AR(2) among all 12 indicators. However, the comparison of 
the RRMSFE values in that table reveals that the most of improvement in the relative 
forecasting accuracy accrues during the recession periods. During expansions the 
benefits of using these SIMs over the benchmark model are less pronounced. For 
example, at FO4 the gains in RMSFE achieved by any of this three SIMs relative to 
the AR(2) model is about 5%–6% during expansions versus approximately 29%–36% 
                                                                 
8 The choice of the AR(2) model as a benchmark model is intentional to make our results directly 
comparable to those reported in Carriero et al. (2015). 
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during recessions. It is worthwhile mentioning that during recessions the RMSFE of 
the housing starts variable (STARTS) is comparable to that of ISM, EMPLOY, 
ORDERS variables. However, this is not the case during expansions when the 
forecasting accuracy of the SIM-STARTS model is the worst among the rest of the 
SIMs and even worse than that of the benchmark model, especially at FO4. The 
information presented in Table B.1 can be visually assessed using Figure B.1. 

All in all, when reporting the results of forecasting accuracy of the SIMs without 
accounting for their differential performance during business cycle phases, the readers 
are misled into believing that the relative performance of indicator-augmented models 
in comparison with the benchmark model is better/worse during expansions/ 
recessions than it really is. 
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Table B.1  
Point forecast accuracy, SIMs 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 RMSFE RRMSFERW/AR(2)* 

Full sample 
AR(2) 2.237 2.102 2.081 2.074     
SIM-ISM 2.172 1.960 1.870 1.775 –0.029 –0.068 –0.101 –0.144 
SIM-EMPLOY 2.198 2.012 1.913 1.835 –0.017 –0.043 –0.081 –0.115 
SIM-SUPDEL 2.234 2.094 2.081 2.031 –0.001 –0.004 0.000 –0.021 
SIM-ORDERS 2.137 1.938 1.793 1.714 –0.045 –0.078 –0.138 –0.174 
SIM-HOURS 2.242 2.099 2.068 2.057 0.002 –0.002 –0.006 –0.008 
SIM-SP500 2.225 2.073 2.053 2.037 –0.005 –0.014 –0.013 –0.018 
SIM-TBILL 2.316 2.186 2.167 2.144 0.035 0.040 0.041 0.034 
SIM-TBOND 2.281 2.137 2.105 2.070 0.020 0.016 0.012 –0.002 
SIM-CLAIMS 2.242  2.020 1.948 0.002  –0.029 –0.061 
SIM-RSALES 2.249  2.075 2.042 0.006  –0.003 –0.015 
SIM-IP 2.225  2.055 1.960 –0.005  –0.012 –0.055 
SIM-STARTS 2.178  2.022 2.091 –0.026  –0.028 0.008 
Boom sample 
AR(2) 1.710 1.705 1.692 1.691     
SIM–ISM 1.702 1.644 1.650 1.603 –0.005 –0.036 –0.025 –0.052 
SIM-EMPLOY 1.730 1.708 1.702 1.696 0.012 0.001 0.006 0.003 
SIM-SUPDEL 1.713 1.693 1.681 1.636 0.002 –0.008 –0.006 –0.032 
SIM-ORDERS 1.684 1.651 1.622 1.592 –0.015 –0.032 –0.041 –0.058 
SIM-HOURS 1.756 1.746 1.736 1.738 0.027 0.024 0.026 0.028 
SIM-SP500 1.720 1.688 1.690 1.666 0.006 –0.010 –0.001 –0.015 
SIM-TBILL 1.664 1.659 1.657 1.644 –0.027 –0.027 –0.020 –0.028 
SIM-TBOND 1.670 1.656 1.649 1.633 –0.023 –0.029 –0.025 –0.034 
SIM-CLAIMS 1.708  1.675 1.648 –0.001  –0.010 –0.025 
SIM-RSALES 1.711  1.675 1.654 0.001  –0.010 –0.022 
SIM-IP 1.709  1.662 1.624 –0.001  –0.018 –0.039 
SIM-STARTS 1.763  1.848 1.995 0.031  0.092 0.180 
Bust sample 
AR(2) 4.339 3.802 3.751 3.726     
SIM-ISM 4.101 3.377 2.939 2.650 –0.055 –0.112 –0.216 –0.289 
SIM-EMPLOY 4.129 3.401 2.952 2.573 –0.048 –0.106 –0.213 –0.309 
SIM-SUPDEL 4.319 3.805 3.787 3.705 –0.005 0.001 0.010 –0.006 
SIM-ORDERS 4.009 3.255 2.662 2.368 –0.076 –0.144 –0.290 –0.365 
SIM-HOURS 4.236 3.663 3.560 3.503 –0.024 –0.037 –0.051 –0.060 
SIM-SP500 4.265 3.731 3.637 3.646 –0.017 –0.019 –0.030 –0.022 
SIM-TBILL 4.755 4.272 4.198 4.145 0.096 0.124 0.119 0.112 
SIM-TBOND 4.608 4.083 3.975 3.878 0.062 0.074 0.060 0.041 
SIM-CLAIMS 4.365  3.541 3.309 0.006  –0.056 –0.112 
SIM-RSALES 4.385  3.778 3.701 0.011  0.007 –0.007 
SIM-IP 4.294  3.731 3.441 –0.010  –0.005 –0.077 
SIM-STARTS 3.949  2.925 2.638 –0.090  –0.220 –0.292 
* The symbol • in RRMSFE•/AR(2) denotes the name of a competing SIM. 
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Figure B.1  
RMSFE summary, SIMs 

 
In order to illustrate the forecasting performance of the SIMs, we present actual and 
forecast values as well as the corresponding CSSFEDs for two selected models (SIM-
ORDERS and SIM-STARTS) against the AR(2) model in Figure B.2 for FO4 and 
Figure B.3 for FO1, FO3–FO4, respectively. These two figures show that indeed most 
of the forecasting gains relative to the benchmark model accumulate during 
recessions. 

Figure B.2  
Actual outturns and point forecasts for selected SIMs 

(a) SIM-ORDERS vs AR(2)     (b) SIM-STARTS vs AR(2) 

 
Figure B.3  
CSSFED computed for selected SIMs 

(a) CCSFED AR2/SIM-ORDERS      (b) CCSFED AR2/SIM-STARTS 

 
It is interesting to observe the dynamics of forecasts for the SIM-STARTS in the pre-
crisis, crisis and post-crisis sub-samples altogether spanning the period of 2002–2011. 
In the pre-crisis period, the CSSFED displayed in Figure B.3(b) fluctuates around 
some level, indicating that the forecasting performance of the SIM-STARTS model is 
comparable with that of the benchmark model. The situation, however, drastically 
changes during the Great Recession period when suddenly the STARTS variable gains 
forecasting power. Nevertheless, in the post-crisis period this forecasting power 
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evaporates as rapidly as it appeared during the crisis. In fact, as shown in 
Figure B.2(b), the SIM-STARTS forecasts in this period severely underestimate the 
GDP growth rate at FO4. 

B.2 Density forecasts 
The forecasting performance of the SIMs is summarised in Table B.2 in terms of the 
ALSs and ALSDs against the benchmark AR(2)-SV model for the full sample as well 
as for its two sub-samples. Comparing these outcomes with the results reported in 
Sub-section B.1 for point forecasts, a number of striking similarities can be noticed. 
First, we also observe heterogeneous results for different indicator models. The three 
best models (SIM-ISM, SIM-EMPLOY, SIM-ORDERS) that produce most accurate 
point forecasts also produce most accurate density forecasts in comparison with the 
benchmark model as well as the rest of the SIMs. Second, the asymmetric forecasting 
performance during expansions and recessions is also present for density forecasts. 
Third, in terms of relative forecasting performance with respect to the benchmark 
model the differences are much more pronounced during recessions than expansions. 
The dynamics of the forecasting performance of selected models relative to the 
benchmark model over time can be visually assessed in Figure B.4. Fourth, the 
backcasts made at the forecast origin FO4 produce the most accurate density forecasts 
compared with those made at the earlier forecast horizons. 

A summary over the forecasting performance of the SIMs over forecast origins is 
presented in Figure B.5. The left panel contains the results for the full sample. Here 
the standard results are present: accuracy of density forecasts seems to improve as the 
forecast origins advance in time. However, as it can be seen from the middle and right 
panels, the magnitude of improvements in density forecasts over the benchmark 
model is much more pronounced for recessions than expansions. 
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Table B.2  
Density forecast accuracy, SIMs 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 ALS ALSD•/AR(2)-SV* 
Full sample 
AR(2)-SV 2.253 2.166 2.159 2.182     
SIM-ISM-SV 2.249 2.130 2.072 2.024 –0.004 –0.036 –0.087 –0.158 
SIM-EMPLOY-SV 2.233 2.148 2.094 2.068 –0.020 –0.018 –0.066 –0.114 
SIM-SUPDEL-SV 2.251 2.175 2.154 2.153 –0.002 0.010 –0.006 –0.029 
SIM-ORDERS-SV 2.221 2.112 2.045 2.004 –0.032 –0.053 –0.114 –0.178 
SIM-HOURS-SV 2.262 2.184 2.175 2.157 0.009 0.018 0.015 –0.025 
SIM-SP500-SV 2.247 2.182 2.158 2.156 –0.007 0.016 –0.001 –0.026 
SIM-TBILL-SV 2.260 2.181 2.183 2.164 0.007 0.015 0.023 –0.019 
SIM-TBOND-SV 2.259 2.180 2.170 2.159 0.006 0.015 0.011 –0.023 
SIM-CLAIMS-SV 2.272  2.150 2.112 0.019  –0.009 –0.070 
SIM-RSALES-SV 2.268  2.170 2.160 0.015  0.010 –0.023 
SIM-IP-SV 2.252  2.137 2.115 –0.001  –0.023 –0.068 
SIM-STARTS-SV 2.242  2.124 2.126 –0.011  –0.036 –0.056 
Boom sample 
AR(2)-SV 2.092 2.043 2.044 2.059     
SIM-ISM-SV 2.087 2.023 1.990 1.959 –0.005 –0.020 –0.054 –0.100 
SIM-EMPLOY-SV 2.083 2.032 2.009 2.014 –0.009 –0.011 –0.035 –0.045 
SIM-SUPDEL-SV 2.090 2.047 2.034 2.032 –0.002 0.005 –0.010 –0.027 
SIM-ORDERS–SV 2.069 2.005 1.969 1.948 –0.022 –0.038 –0.075 –0.111 
SIM-HOURS-SV 2.101 2.062 2.063 2.057 0.009 0.019 0.019 –0.002 
SIM-SP500-SV 2.082 2.053 2.044 2.043 –0.010 0.010 –0.000 –0.015 
SIM-TBILL-SV 2.079 2.036 2.047 2.039 –0.013 –0.007 0.003 –0.020 
SIM-TBOND-SV 2.086 2.050 2.041 2.039 –0.006 0.007 –0.003 –0.019 
SIM-CLAIMS-SV 2.095  2.034 2.021 0.003  –0.010 –0.037 
SIM-RSALES-SV 2.095  2.038 2.038 0.003  –0.006 –0.021 
SIM-IP-SV 2.084  2.020 2.012 –0.008  –0.024 –0.047 
SIM-STARTS-SV 2.082  2.042 2.058 –0.009  –0.002 –0.001 
Bust sample 
AR(2)-SV 3.324 2.982 2.926 3.004     
SIM-ISM-SV 3.324 2.844 2.617 2.458 0.000 –0.138 –0.309 –0.547 
SIM-EMPLOY-SV 3.232 2.918 2.657 2.432 –0.092 –0.063 –0.269 –0.572 
SIM-SUPDEL-SV 3.320 3.025 2.951 2.960 –0.004 0.043 0.025 –0.044 
SIM-ORDERS-SV 3.231 2.825 2.551 2.378 –0.093 –0.156 –0.375 –0.626 
SIM-HOURS-SV 3.333 2.991 2.914 2.821 0.009 0.009 –0.012 –0.183 
SIM-SP500-SV 3.340 3.039 2.916 2.908 0.016 0.058 –0.010 –0.096 
SIM-TBILL-SV 3.466 3.144 3.083 2.996 0.141 0.163 0.157 –0.008 
SIM-TBOND-SV 3.411 3.045 3.026 2.956 0.087 0.064 0.100 –0.048 
SIM-CLAIMS-SV 3.446  2.918 2.714 0.122  –0.008 –0.290 
SIM-RSALES-SV 3.416  3.044 2.967 0.091  0.118 –0.037 
SIM-IP-SV 3.372  2.914 2.797 0.048  –0.012 –0.207 
SIM-STARTS-SV 3.302  2.664 2.577 –0.022  –0.262 –0.427 
* The symbol • in ALSD•/AR(2)-SV denotes the name of a competing SIM. 
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Figure B.4  
ALS summary, SIMs 

 
Figure B.5  
Density forecast accuracy, SIMs 

(a) CSLSD AR(2)-SV/SIM-ISM-SV (b) CSLSD AR(2)-SV/SIM-EMPLOY-SV 

 
(c) CSLSD AR(2)-SV/SIM-ORDERS-SV (d) CSLSD AR(2)-SV/SIM-STARTS-SV 

 
All in all, consistent with the results reported above for point forecasts care should be 
taken when assessing density forecasting performance over longer periods of time that 
span one or several business cycles. Ignoring the differential performance of the 
models during business cycle phases is likely to lead to distorted evaluation of model 
predictive ability in normal and crisis times. 

C. Combinations of SIMs 

C.1 Point forecasts 
The results of the forecasting exercise using combinations of SIMs based on their 
point forecasting performance is summarised in Table C.1 in terms of RMSFE and 
RRMSFE. In general, the conclusions drawn from Table B.1 apply also for their 
combinations. First, there is asymmetry in the forecasting performance across 
business cycle phases which again biases conclusions on the forecasting performance 
of model combinations reported for the whole forecasting sample ignoring booms and 
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busts. Second, gains in forecasting accuracy over the benchmark model are mainly 
brought about by those observations during recessions. It is worthwhile noticing that 
in expansions the forecasting performance of model combinations is comparable to 
that of the most accurate SIMs (see Table B.1). However, this is not the case during 
recessions; the forecasting performance of model combinations is somewhat lower 
than that of the best SIM. Out of model combinations the most accurate forecasts 
during recessions were produced by combinations based on recursive weighting with 
a rather heavy discounting, δ = 0.30. It is worthwhile noticing that during recessions 
the accuracy of forecasts based on equal weighting were found to be inferior to that 
based on recursive weighting. 

Table C.1  
Point forecast accuracy, point forecast combination of SIMs 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 RMSFE RRMSFERW/AR(2)* 
Full sample 
AR(2) 2.237 2.102 2.081 2.074     
CPF-EW 2.210 2.041 1.965 1.886 –0.012 –0.029 –0.056 –0.091 
CPF-RW100 2.209 2.037 1.955 1.871 –0.012 –0.031 –0.060 –0.098 
CPF-RW090 2.208 2.036 1.949 1.863 –0.013 –0.032 –0.063 –0.102 
CPF-RW030 2.207 2.035 1.936 1.833 –0.013 –0.032 –0.070 –0.116 
Boom sample 
AR(2) 1.710 1.705 1.692 1.691     
CPF-EW 1.692 1.657 1.633 1.590 –0.010 –0.029 –0.035 –0.059 
CPF-RW100 1.692 1.657 1.633 1.588 –0.010 –0.028 –0.035 –0.061 
CPF-RW090 1.693 1.657 1.638 1.596 –0.010 –0.028 –0.032 –0.056 
CPF-RW030 1.699 1.664 1.646 1.608 –0.006 –0.024 –0.027 –0.049 
Bust sample 
AR(2) 4.339 3.802 3.751 3.726     
CPF-EW 4.279 3.687 3.434 3.222 –0.014 –0.030 –0.085 –0.135 
CPF-RW100 4.277 3.671 3.392 3.160 –0.014 –0.035 –0.096 –0.152 
CPF-RW090 4.268 3.665 3.351 3.097 –0.016 –0.036 –0.107 –0.169 
CPF-RW030 4.250 3.640 3.260 2.920 –0.020 –0.043 –0.131 –0.216 
* The symbol • in RRMSFE•/AR(2) denotes the name of a competing model. 

The actual and forecast values for the best forecasting model combination approach 
are shown in Figure C.1(a) at FO4. The corresponding CSSFEDs for all forecast 
origins FO1–FO4 are shown in Figure C.1(b). The shape of CSSFED for model 
combinations is very similar to that of the best model among the SIMs, SIM-ORDERS 
(see Figure B.3(b)), i.e. jumps occur precisely during recessions. 
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Figure C.1  
Assessment of point forecast accuracy, AR(2) and CPF-RW030 

(a) Outturns and forecasts, FO4 (b) CCSFED AR(2)/CPF-RW030     

 
In the left and right panels of Figure C.2 we show the evolution of the RMSFEs by 
the forecast origin when these are evaluations for the whole sample and when the 
evaluation is done separately for expansions (the middle panel) and recessions (the 
right panel). The following comments can be made based on the figure. 

Figure C.2  
RMSFE summary, point forecast combinations 

 
First, the model combinations display very little reduction in the reported RMSFEs 
during expansions. Second, consistent with the results reported for the individual 
models most of the evidence bringing down average squared forecast errors accrues 
during resessions. Third, as mentioned above, among all model combinations the one 
with recursive weights with heavy discounting of the past (CPF-RW030) performs 
slightly better than the rest of the weighting schemes. Fourth, none of the model 
combinations is able to improve upon the forecasting accuracy of the best single-
indicator model SIM-ORDERS for recessions. 

Weights of the model combinations for the latest forecast origin FO4 are shown in 
Figure C.3. Comparing Figures C.3(a) and C.3(b) one can conclude that going from 
equal weighting to recursive one without discounting brings about very little: all the 
models are still assigned almost equal weights. However, by changing the discounting 
parameter from δ = 1 to δ = 0.9 and further to δ = 0.3 volatility in the weight magnitude 
increases though none of the models gets assigned a weight approaching the value of 
100%. 
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Figure C.3  
Point forecast combinations: weights at FO4, without SV 

(a) CPF-EW, FO4  (b) CPF-RW100, FO4 

 
(c) CPF-RW090    (d) CPF-RW030 

 
C.2 Density forecasts 

The results of the forecasting exercise using combinations of SIMs based on their 
density forecasting performance are summarised in Table C.2 in terms of the ALS and 
ALSD. In Figure C.4 the evolution of the ALS is shown across forecast origins for the 
whole sample as well as its expansionary and recessionary sub-periods. In general, 
the conclusions drawn for individual indicator-augmented models apply also for their 
combinations. First, there is asymmetry in the forecasting performance across 
business cycle phases. Second, the largest gains in forecasting accuracy over the 
benchmark model are brought about by those observations during recessions. In 
addition, as the forecast origin moves forward the increase in the forecasting accuracy 
is much more pronounced during recessions than expansions; compare the middle and 
right panels of Figure C.4. Third, the combination based on recursive weighting 
produces more accurate density forecasts than the scheme based on equal weighting. 
This holds both for recessions and expansions. 
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Table C.2  
Density forecast accuracy, density forecast combination of SIMs 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 
 ALS ALSD•/AR(2)-SV* 
Full sample 
AR(2)-SV 2.253 2.166 2.159 2.182     
CDF-EW-SV 2.247 2.157 2.123 2.093 –0.007 –0.009 –0.037 –0.090 
CDF-RW-SV 2.241 2.133 2.068 2.026 –0.012 –0.033 –0.091 –0.156 
Boom sample 
AR(2)-SV 2.092 2.043 2.044 2.059     
CDF-EW-SV 2.081 2.033 2.018 2.005 –0.010 –0.010 –0.026 –0.054 
CDF-RW-SV 2.081 2.019 1.988 1.966 –0.011 –0.023 –0.056 –0.092 
Bust sample 
AR(2)-SV 3.324 2.982 2.926 3.004     
CDF-EW-SV 3.343 2.982 2.819 2.677 0.019 –0.000 –0.107 –0.327 
CDF-RW-SV 3.308 2.886 2.598 2.423 –0.016 –0.096 –0.328 –0.581 
* The symbol • in ALSD•/AR(2)-SV denotes name of a competing model. 

Figure C.4 
ALS summary, density forecast combinations 

 

The performance of the density combinations relative to the benchmark model can be 
assessed by examining the CSLSDs shown in Figure C.5. The largest gains in 
forecasting accuracy are observed during recessions, especially at the forecasting 
origin FO4. At the earlier forecasting origins FO1–FO2 the relative forecasting gains 
are of a somewhat smaller magnitude. It is interesting to note that in the period 
between the first and second recessions in our sample the model combinations 
produced more or less steady gains in forecasting accuracy over the benchmark model 
at FO3–FO4 as evident from the upwards trending CSLSDs. 

The weights attached to every SIM are shown in Figure C.6 for all forecast origins. A 
close examination explains why the description of the forecasting performance of 
model combinations is very similar to that of individual models. At FO1–FO3 there 
is only one model (SIM-ORDERS) that dominates the combination. 

There are two models (SIM-ORDERS and SIM-ISM) that essentially dominate the 
combination at FO4. 

Earlier in the sample a larger weight is attached to the latter model, whereas during 
the period of the Great Recession their ranking is reversed with the former model 
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gaining in importance. The weighting scheme based on equation (12) for 
combinations of density forecasts is much more aggressive than that based on the 
discounted MSFE in equation (11) for combinations of point forecasts (see Figure C.3 
for comparison). 

Figure C.5  
Density forecast accuracy, density forecast combinations of SIMs 

(a) CSLSDAR(2)-SV/CDF-EW-SV      (b) CSLSD 
AR(2)-SV/CDF-RW-SV 

 
Figure C.6  
Density forecast combinations, recursive weights 

(a) FO1     (b) FO2 

 
c) FO3    (d) FO4 

 

D. Impact of stochastic volatility on forecast accuracy 

D.1 Point forecasts 
In this section we will briefly discuss the influence of introducing stochastic volatility 
into the models evaluated in terms of point forecast accuracy in the Appendix. The 
relative RMSFEs computed for each model with stochastic and constant volatility are 
presented in Table D.1. In general, we find no systematic evidence that the addition 
of stochastic volatility improves accuracy of point forecasts. It is interesting that this 
finding holds both for the whole forecast evaluation sample and the two boom/bust 
sub-periods. The magnitude of the effect in most cases comprises a couple of 
percentage points in either direction depending on a model type and forecast origin. 
This finding is consistent with the results reported in Table 2 of Carriero et al. (2015, 
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p. 849) that also compares forecasting accuracy of models with constant and stochastic 
volatility for the whole forecast evaluation sample. 

Table D.1 
Impact of stochastic volatility on point forecast accuracy 

 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 

 Full sample Boom sample Bust sample 
AR(2) 0.010 0.002 0.005 0.003 0.015 0.011 0.015 0.008 0.004 –0.010 –0.009 –0.004 
RW 0.009 0.003 0.017 0.001 0.003 –0.006 0.011 –0.005 0.015 0.010 0.022 0.007 
SIM-ISM 0.008 0.010 0.007 –0.001 0.007 0.011 –0.005 –0.005 0.008 0.010 0.031 0.009 
SIM-EMPLOY 0.008 0.009 0.008 0.010 0.007 0.001 –0.001 0.006 0.008 0.022 0.027 0.023 
SIM-SUPDEL 0.008 0.005 –0.009 –0.001 0.013 0.005 –0.002 0.006 0.002 0.005 –0.018 –0.010 
SIM-ORDERS 0.008 0.009 0.019 0.010 0.017 0.002 0.002 –0.008 –0.004 0.019 0.057 0.063 
SIM-HOURS –0.008 –0.003 –0.004 –0.013 –0.006 –0.001 –0.002 –0.013 –0.011 –0.006 –0.008 –0.014 
SIM-SP500 0.001 0.006 0.018 0.008 0.003 0.011 0.014 0.013 –0.001 0.000 0.024 0.001 
SIM-TBILL –0.017 –0.028 –0.019 –0.024 0.026 0.010 0.021 0.014 –0.054 –0.068 –0.063 –0.066 
SIM-TBOND –0.015 –0.011 –0.010 –0.013 0.019 0.023 0.029 0.022 –0.045 –0.049 –0.057 –0.056 
SIM-CLAIMS 0.004  0.005 0.000 0.011  0.007 0.011 –0.003  0.001 –0.020 
SIM-RSALES 0.001  –0.004 0.002 0.014  0.001 0.003 –0.013  –0.010 0.002 
SIM-IP 0.002  0.005 0.006 0.010  0.009 0.007 –0.006  –0.001 0.005 
SIM-STARTS 0.007  –0.012 –0.039 –0.016  –0.039 –0.076 0.036  0.057 0.092 

CPF-EW 0.004 0.004 0.010 0.009 0.015 0.015 0.014 0.013 –0.007 –0.010 0.003 0.003 
CPF-RW100 0.004 0.005 0.011 0.010 0.015 0.015 0.014 0.012 –0.007 –0.008 0.007 0.008 
CPF-RW090 0.005 0.006 0.013 0.012 0.015 0.015 0.013 0.010 –0.005 –0.007 0.013 0.016 
CPF-RW030 0.005 0.006 0.017 0.020 0.013 0.012 0.011 0.009 –0.002 –0.003 0.026 0.042 

The table entries are the values of RRMSFE computed for each model with stochastic and constant volatility. The symbol • in 
RRMSFE•−SV/• denotes the name of the respective model. 
 

D.2 Density forecasts 
The conclusion that there is no systematic effect on accuracy of point forecasts from 
adding stochastic volatility to the forecasting models was stated in Section D.1. In this 
section we intend to investigate the same question for density forecasts. As above, we 
address this question for the full sample and its boom and bust sub-samples. 
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Table D.2 
Impact of stochastic volatility on density forecast accuracy 
 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 FO1 FO2 FO3 FO4 

 Full sample Boom sample Bust sample 

AR(2) –0.212 –0.245 –0.249 –0.231 –0.297 –0.311 –0.309 –0.300 0.356 0.199 0.154 0.227 
RW –0.182 –0.212 –0.228 –0.231 –0.293 –0.300 –0.299 –0.299 0.556 0.375 0.240 0.225 

SIM-ISM –0.193 –0.231 –0.238 –0.244 –0.285 –0.292 –0.286 –0.283 0.418 0.175 0.077 0.013 
SIM-EMPLOY –0.211 –0.200 –0.211 –0.206 –0.294 –0.267 –0.264 –0.239 0.335 0.250 0.142 0.012 
SIM-SUPDEL –0.209 –0.244 –0.255 –0.241 –0.292 –0.316 –0.323 –0.310 0.343 0.235 0.199 0.214 
SIM-ORDERS –0.205 –0.227 –0.210 –0.209 –0.290 –0.292 –0.260 –0.247 0.353 0.204 0.120 0.041 
SIM-HOURS –0.202 –0.244 –0.250 –0.262 –0.297 –0.315 –0.318 –0.319 0.425 0.225 0.197 0.120 
SIM-SP500 –0.211 –0.226 –0.251 –0.243 –0.303 –0.306 –0.317 –0.309 0.397 0.306 0.188 0.199 
SIM-TBILL –0.202 –0.242 –0.230 –0.253 –0.281 –0.308 –0.295 –0.303 0.322 0.193 0.203 0.082 
SIM-TBOND –0.209 –0.245 –0.246 –0.244 –0.293 –0.309 –0.313 –0.310 0.349 0.183 0.198 0.189 
SIM-CLAIMS –0.187  –0.246 –0.263 –0.287  –0.315 –0.314 0.482  0.209 0.079 
SIM-RSALES –0.194  –0.238 –0.243 –0.287  –0.314 –0.313 0.423  0.263 0.216 
SIM-IP –0.194  –0.224 –0.205 –0.290  –0.273 –0.255 0.445  0.102 0.126 
SIM-STARTS –0.190  –0.234 –0.222 –0.292  –0.290 –0.277 0.486  0.142 0.139 

CDF-EW –0.199 –0.230 –0.238 –0.245 –0.289 –0.300 –0.299 –0.296 0.397 0.235 0.168 0.097 
CDF-RW –0.200 –0.219 –0.206 –0.206 –0.287 –0.286 –0.260 –0.248 0.379 0.231 0.147 0.070 

The table entries are the values of ALSD computed for each model with stochastic and constant volatility. The symbol • in ALSD•−SV/• 

denotes the name of the respective model. 

The effect of the stochastic volatility on the density forecast accuracy is reported in 
Table D.2. Entries in the table are differences in ALS reported between models with 
stochastic and constant volatility in the residual error term. Negative entries imply that 
on average density forecast accuracy of the models with stochastic volatility is higher, 
postive entries indicate the opposite. As seen, for the full sample as well as for 
expansions the models with stochastic volatility produce lower ALS than their 
counterparts with constant volatility. This is in line with results reported in Carriero 
et al. (2015). However, for recessions we have a different situation. For the benchmark 
models, the SIMs and SIM combinations, there are positive entries at all forecast 
origins FO1–FO4 indicating that during recessions models with stochastic volatility 
produced on average less accurate density forecasts. 

In tracking the reason for this at the first glance surprising result it is instructive to 
inspect plots of CSLSD for the models with stochastic and constant volatility. These 
are displayed for the benchmark AR(2) model in Figure D.1. In general, upwards 
trending behaviour of the CSLSDs indicates more or less steadily gains in density 
forecast accuracy of the model with stochastic volatility over that with constant 
volatility. However, there are several observations when the latter models produced 
more accurate density forecasts. Namely, these observations belong to the recession 
period in the early 1990s and the Great Recession. 

This finding reinforces the observation made in the main text for the density forecasts 
of the multiple-indicator models. During recessions when actual outcomes of the 
predicted variable lies farther out in the tails of the variable distribution the fatter tails 
of the models with constant volatility may better capture uncertainty surrounding 
nowcasts. This observation at best can be seen and explained when a comparison of 
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the relative forecasting performance of the competing models is done by using 
recursive forecast evaluation metrics. As demonstrated in Carriero et al. (2015), when 
relying on the measures based on the averages computed for the whole forecast 
evaluation sample, this peculiar finding is likely to be left unnoticed by the researcher. 

Figure D.1  
Impact of stochastic volatility on density forecast accuracy: CSLSDAR(2)-SV/AR(2) 

 

Summary 

The results presented in the Appendix confirm the findings reported in the main text. 
The asymmetry in the absolute and relative measures of the accuracy of point and 
density forecasts across the business cycle phases can be easily detected for these 
additional models considered. Our results indicate that the data-pooling approach of 
Carriero et al. (2015) produces more accurate point and density forecasts during 
recessions than the model-pooling approach of Mazzi et al. (2014). During expansions 
their performance is more or less similar. The impact of stochastic volatility on point 
forecast accuracy is unsystematic and of a relatively minor magnitude. However, the 
impact of stochastic volatility on density forecasts is positive during expansions, but 
during recessions the impact sign is reverted, i.e. models with constant volatility 
produce more accurate density forecasts than their counterparts with stochastic 
volatility. 
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